AFL++: Combining Incremental Steps of Fuzzing Research

Andrea Fioraldi’, Dominik Maier?, Heiko EiBfeldt, Marc Heuse?
{andrea, dominik, heiko, marc}@afiplus.plus
tSapienza University of Rome, £TU Berlin, SThe Hacker’s Choice

Abstract

In this paper, we present AFL++, a community-driven open-
source tool that incorporates state-of-the-art fuzzing research,
to make the research comparable, reproducible, combinable
and — most importantly — useable. It offers a variety of novel
features, for example its Custom Mutator API, able to extend
the fuzzing process at many stages. With it, mutators for
specific targets can also be written by experienced security
testers. We hope for AFL++ to become a new baseline tool
not only for current, but also for future research, as it allows
to test new techniques quickly, and evaluate not only the
effectiveness of the single technique versus the state-of-the-
art, but also in combination with other techniques. The paper
gives an evaluation of hand-picked fuzzing technologies —
shining light on the fact that while each novel fuzzing method
can increase performance in some targets — it decreases
performance for other targets. This is an insight future fuzzing
research should consider in their evaluations.

1 Introduction

The research on Fuzzing is a flourishing field. Fuzzing un-
covers a variety of bugs in a fully automated fashion. Fuzz-
testing has seen a big interest in the information security
community in recent years and has sparked advancements in
different fields. In tests performed by Shoshitaishvili et al.,
symbolically-assisted fuzzing identified almost three times
more vulnerabilities than symbolic execution [39].

The number of developed techniques aiming to improve
fuzzing grows [28] — sometimes without fully-functioning
code, if at all. In addition, fuzzing techniques are often devel-
oped orthogonally and independently, so combining them can
be a long process. It can be difficult for industry and the OSS
community to decide which research is worth the attention.
Instead, they may stick with a basic setup, even though mod-
ern research would find more bugs for their target, faster. On
the other hand, researchers themselves can have a hard time
evaluating their novel tools, and may find themselves unable

to combine functionality with the compatible techniques that
address different, but related problems in fuzzing — for ex-
ample picking a recent seed scheduling for their mutator. A
new feedback concept may not live up to its full potential if
it cannot be combined with existing techniques solving other
problems — like overcoming hard comparison instructions —
reducing the impact of the research on paper due to lackluster
statistics.

In this paper, we try to solve these problems by raising
the bar of broadly available, research-backed, fuzzing, and
by giving researchers an extensible API to build upon. We
propose a novel fuzzing framework, AFL++. Future research
can use AFL++ as a new baseline. It gives researchers the
possibility to evaluate combinations of their proposals with
state-of-the-art orthogonal features already implemented in
AFL+ — with a highly reduced implementation effort. At
the same time, it offers industry professionals a large range
of easy-to-use features adapted from cutting-edge research,
that can greatly improve the outcome of a fuzzing campaign.
AFL++ is a reengineered fork of the popular coverage-guided
fuzzer AFL by Zalewski [47] which has proven to be a solid
base for works in academia and industry alike.

AFL was chosen as the base because at the time of the
start of this project it was already unmaintained for 18 months
while at the same time a lot of community patches and aca-
demic forks were available. Hence this provided a perfect
start. This would not have been possible with LIBFUZZER
and HONGGFUZz as they were and still are actively main-
tained and still do not enjoy major forks and enhancements in
comparison (with notable exceptions for ENTROPIC [9] and
Vranken’s enhancements [41]).

While AFL++ started off as collection of patches and forks
to AFL, over time we reimplemented non-afl-based research
like REDQUEEN [5], as well as research-grade extensions to
AFL to make them production ready, for AFL++. We then
added novel features on top of this state-of-the-art, that will
also be discussed in this paper.

All in all, this paper will give insights into a year of active,
open-source, fuzzing research, discuss lessons-learned, and

discuss the novel Custom Mutator API, a way to implement
novel fuzzing research.

1.1 Contributions

1. We propose AFL*+, incorporating recent fuzzing re-
search into one usable tool.

2. We discuss AFL++’s novel Custom Mutator API an ap-
proachable, and future-proof way to implement and com-
bine future research.

3. Using AFL++, we evaluate a selection of incorporated
technologies and features against, and with, each other.
We show how target-dependent each technology is — a
very relevant insight for future research.

AFL++ and all the related artifacts are Open Source Soft-
ware and available on GitHub at:

https://github.com/AFLplusplus

The test cases for this research are available at
FuzzBench [22].

2 State-of-the-Art

American Fuzzy Lop (AFL) [47] is one of the most widely
used and most successful coverage-guided fuzzers of all time.
It is the current baseline for a wide variety of fuzzing-related
publications. In this section, we discuss American Fuzzy Lop
and the research done over the past years to improve specific
aspects of this fuzzer in-depth, yet as concise as possible. The
concepts explained in this section are directly relevant for
AFL++, which will be presented in Sect. 3.

2.1 American Fuzzy Lop

AFL is a mutational, coverage guided fuzzer. It mutates a
set of test cases to reach previously unexplored points in the
program. When this happens, the test case triggering new
coverage is saved as part of the test case queue.

2.1.1 Coverage Guided Feedback

The coverage feedback of AFL is a hybrid metric, combining
edge coverage with the count of how many times the respec-
tive edge was executed in one run. This count is bucketed
to a power of two to avoid path explosion. An input is con-
sidered interesting (i.e. saved to the queue) if it explores at
least one new bucket for an edge. These buckets, or hitcounts,
are logged to a shared bitmap during execution, in which
each byte represents an edge. The size of this map is limited,
so collisions are possible. AFL employs an approximation
of weighted minimum set cover to maintain a set of favored

test cases — in terms of coverage — with speed and size as
weights.

Using the coverage feedback AFL also tries, for each test
case in the queue, to reduce the size of the test case and
improve the speed of the target while maintaining intact the
coverage in a stage called trimming.

2.1.2 Mutations

The mutations of AFL are divided into two categories: de-
terministic and havoc. Deterministic stages include single
deterministic mutations on contents of the test cases, like
bit flips, additions, substitution with integers from a set of
common interesting values (e.g -1, INT_MAX, ...), and oth-
ers. In havoc, mutations are randomly stacked and include
also changes to the size of the test case (e.g. adds or deletes
portions of the input). Additionally, at a later stage, AFL
may merge two test cases into one and apply havoc, in the
so-called splicing stage.

2.1.3 Forkserver

To avoid the overhead of execve (), AFL uses the so-called
forkserver. The fuzzer injects a forkserver, controlled through
an IPC mechanism, into the target. Whenever AFL needs to
execute a test case, it writes the input, then tells the target
to fork itself. The child will execute the test case, the parent
process waits for this time. The forkserver can also fork later
in the target. In this case, the fuzzer does not pay the cost of
running the expensive initialization and startup routines each
time.

2.1.4 Persistent Mode

Persistent mode greatly improves performance. Because
fork () is known to be a bottleneck, for the Persistent Mode,
the target does not fork for each test case. Instead, a loop can
be patched into the target, executing one test case per iteration.
To work, each iteration needs to leave cause minimal state
changes.

2.2 Smart Scheduling

A modern coverage-guided fuzzer may implement different
prioritization algorithms to schedule various elements in the
fuzzing pipeline. The goal of schedulers is usually to improve
overall coverage and bug detections through smart test case
selection.

2.2.1 AFLFast

AFLFAST [11] by Bohme et al. shows the need to stress
low-frequency paths to explore more branches and find more
bugs. They developed several improvements to AFL to not

https://github.com/AFLplusplus

only stress common paths, with the goal to expose additional
program behavior. They highlight two problems:

1. In which order should the fuzzer pick the seeds, in order
to stress low-frequency paths?

2. Can we tune the amount of generated inputs from each
seed (the energy)?

The authors address the first issue with a set of novel search
strategies and the second by introducing six power schedules
to compute the energy from parameters collected during the
fuzzing process.

2.22 MOpt

As a horizontal problem to seed scheduling, MOPT [25] intro-
duced mutation scheduling. In the work, Lyu et al., explore
the possibility to give different probabilities to the mutation
operators, using a custom Particle Swarm Optimization al-
gorithm. This optimization improves the capabilities of a
fuzzer to discover coverage quickly. In their patch to AFL,
the authors divide the fuzzing stages into the following two
modules. Pilot, a module that evaluates the operators, as-
signing probabilities based on the effectiveness. The Code
module generates mutations, taking the probabilities found
during Pilot into account.

2.3 Bypassing Roadblocks

Traditionally, coverage guided fuzzers suffer from roadblocks
that prevent to explore code behind them. Typical roadblocks
are larger comparisons, like a string, and checksum checks.
A range of research was derived to tackle this problem.

2.3.1 LAF-Intel

LAF-INTEL [2] is a work that aims to bypass hard multi-
byte comparisons, by splitting them into multiple single-byte
comparisons. That way, these comparisons can be passed,
byte by byte, with the coverage guided fuzzer receiving feed-
back for each part. The original implementation is a set of
LLVM passes, splitting up integer comparisons, but also calls
to string comparisons functions like st rcmp when one of the
arguments is known at compile time. In the details, LAF-
Intel:

1. Simplifies the >= (and <=) operators into chains of > (<)
and == comparisons;

2. Changes signed integer comparisons to a chain of sign-
only comparison and unsigned comparisons;

3. Splits all unsigned integer comparisons with bit widths
of 64, 32 or 16 bits to chains of multiple comparisons of
8 bit;

2.3.2 RedQueen

Recently, REDQUEEN [5], based on KAFL [36], explored the
possibility to bypass hard comparisons and checksum checks,
like other previous works in literature [35] [12] [33] [44],
but without the use of expensive techniques like taint track-
ing [46] or symbolic execution [6, 37]. This fuzzer focuses
on the comparisons that are defined as Input-To-State (I125), a
type of comparison that has a direct dependency with the input
in at least one of its operands. The authors showed that many
of the roadblocks comparisons are of this type and developed
a technique to locate and bypass them. REDQUEEN firstly
increases the entropy in the input in its colorization stage,
replacing bytes with random data while maintaining the cov-
erage of the test case. In this way, observing an operand of an
12S comparison, the fuzzer can reduce the number of guesses
to locate its position in the input. REDQUEEN then mutates
the input replacing the I2S tokens extracted from comparisons
and use again this information to locate checksum checks and
patch them out. At the end of each fuzzing stage, REDQUEEN
use again I2S replacement to repair checksums of the newly
generated interesting inputs. If it fails, the patched checksum
is detected as a false positive the patch removed.

2.4 Mutate Structured Inputs

A common issue for fuzzers is that they may generate mostly
invalid inputs, making the state of the program after the pars-
ing stages inaccessible. A solution to this is the usage of
an input model, effectively reducing the space of generated
inputs. This allows a feedback-based fuzzer to explore deep
paths in a program.

2.4.1 AFLSmart

Pham et al. introduced structured fuzzing to AFL: AFLS-
MART [34]. AFLSMART uses PEACH [14] pits as input model
format, a widely used specification for structured black-box
fuzzing. This choice makes it possible to re-use specifications
for protocols written for PEACH. AFLSMART parses a test
case the first time that it is extracted from the queue. It does so
in a lazy way, with deferred cracking, that allows AFLSMART
to fallback to AFL if it is good enough at exploring coverage
without wasting time with parsing. The result of the parsing
step is a virtual structure that represents an AST. AFLSMART
introduces higher-order structural mutations, mutating the
virtual structure instead of raw bytes. It can be configured to
use only these structural mutations or stack them alongside
the others in Havoc.

3 A New Baseline for Fuzzing

In this section, we will explain the engineering background
of AFL++. The core of AFL++ is a forked version of AFL, a

fuzzer on which a part of the academical fuzzing research is
based upon, and which is also used extensively in the industry.
This section describes what AFL++ adds on top, including
many of the features discussed in Sect. 2. AFL++ is not
limited to the features discussed here. The amount of smaller
advancements in usability and engineering go beyond the
scope of this paper. For a deep dive in this small but effective
improvements, refer to the AFL++ documentation [18].

3.1 Seed Scheduling

AFL++ incorporates AFLFAST and extends it with additional
power schedules. This included all schedules from AFLFAST:
fast, coe, explore, quad, lin, exploit. These schedules are
functions of the following variables:

1. The times that seed is chosen from the queue;

2. The number of generated inputs with the same coverage
of the seed;

3. The average number of generated test cases with the
same coverage in general;

The default schedule is explore. In addition to this, AFL++
adds the mmopt and the rare schedules. Mmopt increases
the score for the newest seeds to help delving deeper into
newly discovered paths. Rare ignores the runtime of the seed
— unlike all other schedules — and additionally puts a focus
on seeds with edges that are rarely covered by other seeds, an
effective metric as shown in [24] [10].

3.2 Mutators

AFL++ incorporates more mutators than the traditional De-
terministic and Havoc pipeline of AFL. The mutators can be
used in combination with others.

3.2.1 Custom Mutator API

AFL*+ can be easily extended for new research in academia
and be adapted to specific targets for vulnerability discovery.
For this, it offers an ever-growing API. The current state is as
follows.

Custom mutators allow fuzzing research to build novel
scheduling, mutation, and minimizations on top of AFL++,
without forking and patching AFL, as is the case with a lot of
current tooling. Initial support to this was first independently
developed in the Holler’s AFL fork [19], but got extended
with a lot of new functionality. Plugins can be written in C
ABI compatible languages, and even prototyped in Python.
With the current API, for instance, AFLSMART can be rewrit-
ten completely as an AFL++ plugin. The following functions
can currently be implemented:

afl_custom_(de) init Each custom mutator can use
these self-explaining functions to initialize or deinitialize the

module, afl_custom_init and afl_custom_deinit. The
AFL+*+’s pseudo-random generator seed is passed to init. The
custom mutator should then make sure that fuzzing results
are reproducible given the same seed.
afl_custom_queue_get is acallback that determines
whether the custom fuzzer should fuzz the current queue entry
or not. In this routine, the user can also perform the initial-
ization of associated metadata for an input, for instance, the
virtual structure for structured fuzzing.
afl_custom_fuzz performs custom mutations on a
given input. It accepts an additional test case.
afl_custom_havoc_mutation performs a single
custom mutation on a given input. This mutation is
stacked with the other mutations in the havoc stage. The
afl_custom_havoc_mutation_probability returns the
probability that the custom mutation is called in havoc en-
abling tuning (defaults to 6%, inspired by AFLSMART).
afl_custom_post_process In some cases, the for-
mat of the mutated data returned from the custom mutator is
not suitable to directly execute the target with this input. For
example, when using libprotobuf-mutator, the data returned
is in a protobuf format which corresponds to a given grammar,
that first need to be converted to the target’s plain-text format.
In such scenarios, or to fix checksums and sizes, the user can
define the afl_custom_post_process function.
afl_custom_queue_new_entry is called after
adding a new test case to the queue, a useful hook to store
metadata on disk.

Trimming Support The generic trimming routines imple-
mented in AFL++ (Sec. 2.1.1) may destroy the structure of
complex formats. This is especially the case when your target
can process a part of the input (causing coverage) and then er-
rors out on the remaining input. In such cases, it makes sense
to implement a custom trimming routine. The API consists
of multiple methods because after each trimming step, the
coverage bitmap has to be against the map before trim.

afl custom_init_trimis called at the start of each
trimming operation and receives the initial buffer. It should
return the number of iteration steps possible on this input
(e.g. if the input has n elements of which one should be
removed, returning n-1). If the implemented trimming algo-
rithm doesn’t allow for determining the amount of (remain-
ing) steps, then it can return 1 to indicate that further trim-
ming could be performed, which will be performed while
afl_custom_post_trimreturns 0.

afl_custom_trimis called for each trimming opera-
tion. It memorizes the current state and hence can save repars-
ing steps for each iteration. It should return the trimmed input
buffer, where the returned data must not exceed the initial
input data in length.

afl_custom_post_trimis called after each trim op-
eration to inform if the trimming step was successful or not
(in terms of the same coverage). This method must return the

next trim iteration index (from O to the maximum amount of
steps returned in af1_custom_init_trim).

3.2.2 Input-To-State Mutator

AFL++ implements a mutator based on REDQUEEN’s Input-
To-State (I12S) replacement. In addition to what is described
above, we made a few optimizations to improve upon the
original implementation.

Firstly, colorization seems to be very effective in increas-
ing the entropy of the bytes in the input but can slow down
the fuzzer a lot, if, for instance, a critical field, such as a
size field, is randomly mutated. We extended colorization
to keep the mutated regions not simply when the hash of the
coverage bitmap remains the same, but also when the execu-
tion speed remains in the bounds of a 2x slowdown from the
original. This improvement seems to make the difference in
pathological targets for REDQUEEN.

Another extension is a probabilistic fuzzing of each com-
parison. If the fuzzer fails to generate an interesting input
when trying to bypass a comparison, the next time this com-
parison will be fuzzed with a lower probability. This avoids
spending too much time on unsolvable comparisons that seem
12S but that are not.

CmpLog Instrumentation This mutator does not log com-
parisons operands using breakpoints, like in the original
REDQUEEN implementation, but uses a shared table simi-
lar to the one used by Fioraldi et al. for WEIZZ [15]. Each
comparison logs the operands of its last 256 executions in a
256 MB table shared between fuzzer and target.

The first part of the table maintains metadata for each com-
parison, like the size, the ID, and the real number of execu-
tions. The total size of 512 KB can be traversed in an efficient
way in terms of cache locality. The metadata suffices to regis-
ter if a comparison is not used, and the memory corresponding
to the operand is never accessed. This instrumentation is avail-
able for the LLVM and QEMU instrumentations.

3.2.3 MOpt Mutator

AFL++ implements the Core and the Pilot mode of MOPT. In
addition to this, MOPT was patched for AFL++, so that it can
be combined with the Input-To-State mutator. On top, AFL++
supports interleaving of MOPT with the standard mutation
modes.

3.3 Instrumentations

AFL++ supports several backends for instrumentation: LLVM,
GCC, QEMU, Unicorn and OBDI. On top, it provides a proxy
module that can be adapted to forward test cases to targets and

give any kind of coverage to af1-fuzz, even remote and non-
coverage, such as ampere consumption or branch addresses
of JTAG.

Table | resumes the state of the implementation of the most
important features discussed in Section 3 for each instrumen-
tation backend.

NeverZero Orthogonally to the backend used for instru-
mentation, we developed an optimization to the hitcount
mechanism of AFL. One problem of using a byte for the
bitmap entries is, that the count of the edge executions can
overflow. When this happens, we observed that if an edge
is hit in multiples of 256 — overflowing the corresponding
bitmap entry to 0 — the fuzzer is in an inconsistent state. We
tried to solve this problem with two solutions, NeverZero,
and Saturated Counters. The first avoids the overflow to 0
always adding the carry flag to the bitmap entry and so, if an
edge is executed at least one time, the entry is never 0. The
second freezes the counter when it reaches the value of 255.
In a range of experiments, we observed that NeverZero is
very effective and improves AFL in terms of coverage and
speed (the seed selection now takes into account edges that
were hidden before). Saturated Counters, however, decreases
AFL’s overall performance. We opted to make NeverZero the
default for AFL++ on most of the available instrumentations.
Saturated Counters are still available in a branch of the AFL++
repository for further research or reproduction.

331 LLVM

We support from LLVM [23] 3.4 up to LLVM 11, which is in
beta at the time of writing. In LLVM mode, AFL*+ supports
a range of coverage metrics in addition to edge coverage [43]:

Context-sensitive Edge Coverage edge coverage is XOR-
ing the assigned ID of each block with the unique ID of the
callee. This solution was firstly explored in [12] and seems
effective in terms of code coverage, with the penalty to have
more collisions and less speed.

Ngram instead of considering the previous block and the
destination block when logging an edge, the fuzzer considers
the destination block and the N-1 previous blocks where N is
a number between 2 and 16.

In addition to the LLVM pass that instruments for coverage
feedback, AFL++ ships several additional passes. All LAF-
INTEL passes are included, with an experimental mode to split
also floating-point comparisons that are abundant in software
like video decoders or Javascript interpreters. Additionally the
string comparison function analysis was improved to be able
to process global and local variables when assigned a fixed
string. The CmpLog passes are available, too, as discussed in
the previous sections. A widely used feature, for example by
Fratrik [29], is the list of files to instrument, firstly introduced
by [19]. In LLVM mode the user can specify specific source
modules to instruments. This is very useful, for instance, with

Table with supported features for each instrumentation backend

H afl-gcc \ LLVM mode \ GCC plugin \ QEMU mode \ UNICORN mode \ QBDI mode ‘

NeverZero v
Persistent mode
LAF-INTEL/ CompCov
CmpLog
Instrument filelist
InsTrim
Ngram/Ctx coverage
Snapshot LKM

SSSSNSNSNASS

v

v v
v v v
v v
v
partial

targets that process many input formats and the user wants to
focus only on one of them. In persistent mode, in addition to
the standard ways to pass the input to the target in AFL (stdin
or file), AFL++ can also pass in new test cases through shared
memory. This configuration brings an additional speedup of
2x to persistent mode, resulting in an overall speedup of up
to 10-20x in respect to fork mode, in our initial tests.

AFL++ LLVM mode also implements the INSTRIM [20]
patches, combined with all the previously exposed features.
INSTRIM is an efficient way to select basic blocks when
instrumenting in LLVM. It avoids to place useless instru-
mentation thanks to an analysis based on Dominator Tree.
It reduces the number of instrumented locations to at least
half of the standard instrumentation on most targets and so
improves the fuzzer in terms of performance in speed.

332 GCC

Alongside the old afl-gcc wrapper, AFL++ ships a GCC
plugin. It includes support to deferred initialization and per-
sistent mode, like AFL LLVM mode. The supported features
are not on par with LLVM, but additional features are planned
in AFL++, with the goal of reaching feature parity eventually.

333 QEMU

The AFL QEMU patches for version 2.1 for binary-only
fuzzing are almost completely replaced in AFL++ with a bet-
ter set of patches based on QEMU 3.1.1. In comparison to
other binary-only instrumentations, such as retrowrite based
on binary patching [13], QEMU mode adds instrumentation
at emulation time. The basic blocks transitions are now not
anymore logged in the context of the emulator when selecting
a block in QEMU but the call to the logging routine is in-
lined using a helper. In this way, we can re-enable the blocks
linking that AFL disabled (as firstly shown in a thread-unsafe
way by [8]) with an average speedup of 2-3x. The use of a
helper enables also the use of Thread Local Storage, a concept
not supported in TCG [3]. Recently, our QEMU mode was
extended by Fioraldi, with QAsan [16], to support sanitiza-
tion against heap violations incorporating a Dynamic Binary
Translation based implementation of AddressSanitizer [38].

CompareCoverage In order to decrease the gap of fea-
tures between source-level and binary-level fuzzing, AFL++
QEMU mode can split comparisons in a similar way to LAF-
INTEL using CompareCoverage [31]. Unlike the LLVM pass,
the code is not modified, but all comparisons are hooked and
each byte of each operand is compared, increasing a different
bitmap entry if equal. This instrumentation is similar to the
popcnt based instrumentation of LIBFUZZER, but at a byte
level, produceing so fewer inputs to avoid path explosion,
an issue that makes the value-profile mode of LIBFUZZER
less effective than normal mode on some targets. It can be
configured to split only integer comparisons with immediate
operands, all integer comparisons, or all integer and floating-
point comparisons.

Persistent Mode Unlike the old QEMU mode, AFL++’s
QEMU-mode supports persistent mode. There are two main
ways to achieve this:

1. Looping around a function: like WINAFL [17], the user
can specify the address of a function, and automatically
the fuzzer will use it in a persistent loop patching the
return address. The address can be also not the first
instruction of a function, but in this configuration, the
user has to provide the offset on the stack to correctly
locate the return address to patch;

2. Specify entry and exit points: a user can specify the
address of the first and the last instruction of the loop
and QEMU will emit code a runtime to generate a loop
between those addresses;

This mode can even reach a 10x speedup and is recom-
mended when possible.

3.3.4 Unicornafl

For fuzzing blob binaries like firmware, AFL++ incorporates
a fork of afl-unicorn by Voss [40], which adds AFL support to
the Unicorn Engine [30], called unicornafl. While the original
version by Voss started the forkserver on the initial basic
block, and was only available through the garbage-collected

python, AFL++’s unicornafl adds a low-level C API, Rust and
Python bindings, to interact with AFL++ directly. Unicorn
already includes APIs to set page mappings, read and write
memory and registers, add hooks, as well as start and stop
execution with different conditions. AFL++-specific APIs
allow the harness to kick off the fast persistent mode at any
time, as well as to set multiple exits and post-fuzzing handlers
to detect crashes.

The API offers uc_afl_forkserver_start, a specific
call to kick off the fork server at a certain point in time, ef-
fectively freezing the current state prior to a fuzzing run and
telling AFL++ to start generating inputs.

A special uc_afl_fuzz function serves as a one-stop-shop,
directly reading input for each test case - with support for per-
sistent mode. The target firmware is kept in the same state in
the parent process, each fuzz test case is executed against a
forked copy of the emulator. Furthermore, the forkserver con-
tains a caching mechanism for Unicorn’s JIT, inspired by the
AFL QEMU mode. Unicornafl patches instrumentation into
the translated blocks directly, reducing the need for indirect
jumps, re-enabling the optimized blocks linking like already
discussed for QEMU mode. The function uc_afl_fuzz:

1. Loads the current input.

2. Calls the place_input_callback. Here, the harness
should write the input into the emulator memory at the
appropriate position. For persistent mode, the emulator
has to reset additional state changes in this step.

3. Emulates until one of the exits is reached, execution is
cancelled by a hook, or an illegal state occurs.

4. Checks the Unicorn return and (optionally) calls the
crash_validation_callback, where additional post-
processing can be done to spot crashes.

5. For persistent mode, loops back to step 3.

The fuzz function also takes a list of exits at which emula-
tion will stop, a flag whether the validation callback should
also be called without a Unicorn error condition and an
additional integer counter, indicating if—and how often—
persistent mode should loop before forking again. Maier et al.
were able to use it, on top of AFL++, to fuzz kernels [26] and
even a cellular baseband rtos [27].

3.3.5 QBDI

AFL++ can fuzz Android libraries with compiler instrumen-
tation using LLVM, but can also instrument closed-source
libraries. It supports harnessing with QuarksLab’s QBDI
Dynamic Binary Instrumentation [21] framework for Android
native libraries. An example is shipped with the source dis-
tribution of AFL++, making the usage and the extension very
simple.

3.4 Platform Support

The support to several Operating Systems and distribution is
maintained in AFL++. Besides GNU/Linux, the fuzzer runs
on Android, i0S, macOS, FreeBSD, OpenBSD, NetBSD
and is packaged in several popular distributions like De-
bian, Ubuntu, NixOS, Arch Linux, FreeBSD, Kali Linux
and more. For this broad range of support, many features, like
libdislocator, the AFL allocator to catch memory errors, had
to be ported to several different Operating Systems and ex-
tended with previously unsupported allocation routines, like
posix_memalign (). Ontop, AFL++’s QEMU [7] mode, has
a Wine [1] mode, that can fuzz compatible Win32 binaries on
GNU/Linux.

3.5 Snapshot LKM

The AFL state-restore mechanism based on fork () is well-
known to be a performance bottleneck for a large number
of targets. Hence, AFL++ integrates a Linux Kernel Module
!, inspired by Perffuzz by Xu [45]. Perffuzz implements a
lightweight mechanism for process snapshot and restore. The
average gain in performance on a single core with our module,
compared to fork, is up to 2x, but the difference increases
when running parallel fuzzing on many cores due to the locks
in the kernel implementation of fork (). The use of snapshots,
instead of fork, does not require a recompilation of the target
program. Instead, once the driver is loaded, the module’s
presence is automatically detected.

4 Evaluation Use Cases

This section gives an insight into the fuzzing performance
of some of the technologies discussed in Sect. 3 that are
published research, and a usable part of AFL++. To show
AFL++ in action, we also discuss combinations that were not
possible otherwise, in their respective forked tools, such as
the powerful combination of RedQueen and MOpt.

For the evaluation in this section, we use AFL++ together
with FuzzBench [22] to reproduce and evaluate the state of
the art (Evaluation of FuzzBench). AFL++ can be used to
compare a wide range of fuzzing concepts against each other.
In the following, we highlight a few interesting insights gath-
ered over the last months in various tests. These are example
runs, combinations, and evaluations that a new tool using
AFL++ as baseline can do, with the help of FuzzBench.

As the range of features incorporated into AFL++ would
exceed the scope of this paper, we picked 6 specific configu-
rations:

1. [Default] the default AFL setup, with some specific
fixes and improvements

2. MOpt A very effective mutator, discussed in Sect. 3.2.3.

Thttps://github.com/AFLplusplus/AFL-Snapshot-LKM

https://github.com/AFLplusplus/AFL-Snapshot-LKM

3. Ngram4 A different instrumentation, interpreting the 4
following basic blocks as a unique path.

4. RedQueen Cmplog/RedQueen, an additional feedback
channel to the fuzzer to reach greather depth, see
Sect. 3.2.2

5. Ngramd4, Rare The Ngram4 instrumentation, paired
with Rare scheduling 3.1, a unique combination in
AFL++.

6. MOpt, RedQueen The MOpt mutation, paired with
RedQueen — another unique combination in AFL++.

The final data, discussed here, was collected using the
FuzzBench service [22]. FuzzBench is a novel service by
Google, offering fuzzing evaluations on a fixed set of 21 tar-
gets for originally 24 and now 23 hours each to all interested
projects. Each run is redone about 20 times to get to a mean-
ingful median of the Edge Coverage, as randomness in fuzz
tests can produce accidental strong single runs, yet a good
fuzzer should produce good results consistently.

From the total of 21 FuzzBench targets, we selected the
following 9 due to their specific characteristics, showing
visible outlier behavior. We selected 6 stand-out combina-
tions we will discuss as part of this evaluation, from the
larger number of AFL++ features we tested and looked at
during the evaluation. All other test cases and targets not
discussed here are available on FuzzBench for the avid reader
in AFL++ specific and general FuzzBench runs. The fi-
nal data for this evaluation was taken from FuzzBench run
2020-04-21-and-20-aflplusplus”.

With the selected 6 combinations, we try to show that:

o If we consider MOPT and Ngram4 as an example of pos-
sible novel techniques, we can get useful insights com-
bining them with other orthogonal techniques like other
mutators (REDQUEEN) and power schedules (rare);

e During this run, it becomes apparent, that all fuzzing
behavior is highly target-specific so the importance of a
good choice of a suitable configuration is crucial;

RedQueen In many areas, RedQueen is able to pass road-
blocks no other configuration can, however not all targets have
instructions where this method can help. One of these is the
libpcap example, see Fig. 12. Here, only RedQueen is able to
reach any sorts of depth, as the 12S replacement allowed this
configuration to bypass roadblocks the other configurations
are unable to randomly guess. The MOpt mutator helps to
further increase the coverage in this case. For OpenThread
RedQueen also performs extremely well, fast, see Fig. 1a, but
interestingly only if not paired with MOpt.

Zhttps://www. fuzzbench.com/reports/2020-04-21-and-20-
aflplusplus/index.html

MOpt MOpt shows to either be a hit or miss - often it is
highly effective, however when it is not, the performance is
often very bad, with little middle ground. For mbedtls, see
Fig. 1h, MOpt suddenly starts gaining a massive amount of
new coverage. Mopt is able to find new paths in the middle of
the run and outperform any other configuration by far. As this
happens for multiple runs in the median, this is not a one-time
event, but appears to be target-specific.

The combination RedQueen and MOpt in the harfbuzz
target is the clear winner, see Fig. le, just as in the libpcap
target, Fig. 1g, where only RedQueen reaches any sort of
depth, and MOpt adds to the positive results. In the bloaty
fuzz target, where RedQueen takes some time to catch up,
MOpt proves very helpful, see Fig. 1b

For libjpeg-turbo MOpt has a high impact on the behavior
of RedQueen, changing the median coverage graph almost
completely, see Fig. 1d.

However, one very interesting observation can be made for
the lcms target, where positive effects of RedQueen counters
negative effects of MOpt in Icms, see Fig. 11.

Ngram Ngram (of length 4 in our tests) can be an effective
instrumentation method to reach more depth, as branch instru-
mentation depends on prior branches, effectively adding a bit
of state feedback. The z/ib example is such a case, see Fig. li.
As is the case with almost all combinations, Rare scheduling
sometimes improves, sometimes fares worse than the default
AFL++ scheduling. Another target is libxml2, where MOpt
performs badly, RedQueen has close to no effect, but Ngram4
shines Ic.

4.1 AFL++ Optimal

In the previous section we assessed the effectiveness of a
range of fuzzing technologies implemented in AFL++ and
how they interact when combined.

Typically, in real-word fuzzing campaigns, this is just the
first step, and after a first evaluation of different configurations
is carried out by a security researcher, the fine-tuning starts.

Based on our evaluations on FuzzBench, we performed
hand-picked setups of AFL++ for a given target, in runs we
call AFL++ Optimal.

This is an ongoing process, and will improve even further
over time. The learning will, in turn, lead to better defaults in
the fuzzer. For instance, SanitizerCoverage was found to be
the best instrumentation option for most cases and therefore
made the default.

We hand-crafted and enabled AFL++ Optimal for 13 of the
21 available targets. With this, the average normalized score
of the percentage of the highest reached median coverage for
each target increased by 7% and AFL++ Optimal generally
outperforms all other fuzzers on FuzzBench’.

3https://www. fuzzbench.com/reports/2020-06-30/index.html

https://www.fuzzbench.com/reports/2020-04-21-and-20-aflplusplus/index.html
https://www.fuzzbench.com/reports/2020-04-21-and-20-aflplusplus/index.html
https://www.fuzzbench.com/reports/2020-06-30/index.html

4500 7
1700 4 52501
4000
o S o
£ 1650 25000 Ef
g g g
K] 3 4750 g 35001
£ 16004 & &
T < 1500)
= g = 30001
I g g
E 1550 4 £ 4250 z
= = = oe i
1000 2500
1500
3750 2000 -
1450 - r T T T T T T d r T T T T T T T d
SIS TSy SIS ISP
R R R RS
Time Time
(a) Coverage growth in openthread (b) Coverage growth for the bloaty fuzz target
1450 7
4400 7 1200
14001
11004
- 4200
o 1350 N N
2 2 21000
£ 1300 | £ 4000 5
S 8 S 900
g 1250 ey %
E < 3800 < 800
5 12001 E .
Z 11501 £ 36001 g 00
= = =
600
11004 34004
5004
1050 -
l T T T T T T T | 3200+ . T T T T T T | 400
SIS TSy SIS ISP
F O F O
Time Time
(d) Coverage growth in libjpeg-turbo (e) Coverage growth for harfbuzz (f) Coverage growth in lcms
3344
17507
5004 1800 3321
B B £330
1250 & &
§ % 1700 g
2 1000 3 © 328
;j: ;j: 16004 g
€ 750 E € 396
El El 2
2 . 3. 2.
s 5004 = 15004 = 3244
2504 3224
1400 -
0- 3204
& & FF RO IO O & F F ¢ Y
Time Time Time
(g) Coverage growth in libpcap (h) Coverage growth in mbedtls (1) Coverage growth in zlib
[[Default] [RedQueen [Ngram4, Rare [Ngram4 [[] MOpt, RedQueen [Jj MOpt

Median edge coverage growth with 66% confidence interval produced by each fuzzer over 20 trials at 24 hours.

5 Future Work

While the AFL++ project has reached good progress over the
past year, there are bigger research and engineering problems
yet to be addressed.

5.1 Scaling

Currently, AFL++’s scaling to multiple threads is less than
ideal. Due to its decision to use the file system for test case

delivery, at least for the backends that are not LLVM, and
due to the reliance on the fork () syscall for certain targets, a
larger part of the time is spent in the kernel. The development
of the Linux Kernel Mode for snapshots is the first step in this
direction. We made the AFL++ code fully thread-safe. The
logical next step will multi-threading support, minimizing the
overhead for synchronization between parallel fuzzers.

5.2 Collision-Free instrumentation

The original instrumentation offered by AFL hashes the cur-
rent jump from and to addresses, in a way that potentially
collides. This is seen as a trade-off between speed and accu-
racy, a problem that we strife to solve in the near future for
both instrumentations based on source code and on emulation.

5.3 Static Analysis for Optimal Fuzz Settings

We do the research presented in this paper to optimize the
presets of AFL++. The current goal is to use the most com-
monly best instrumentation, mutation and scheduling as the
default configuration. However, as we showed in Sect. 4, the
optimum depends heavily on the target.

For future work, finding indications for these through prior
static analysis of the target could suggest a best-effort opti-
mum solution — for example a lot of strcmp could be an
indication to use RedQueen and others. This work will be
based on the results of AFL++ Optimal, discussed in Sect 4.1.

5.4 Plug-in System

While Custom Mutator already grants large flexibility to re-
searchers, the goal is to add additional plug-in functionality
to replace or add functionality to building blocks such as
schedulers, executors and queues.

Additional feedbacks in addition to hitcounts coverage will
be supported, reimplementing from scratch the ideas shown
in [42] [32] [4].

6 Conclusion

The tool discussed in this paper, AFL++, tries to integrate
many of the major fuzzing research of late, where this is
feasible to integrate in the current AFL++ architecture and our
own benchmark show that there is a real-world improvement
of the technique - at the least for corner cases.

After benchmarking all implemented functionality on a
clear playing field, as laid out in Sect. 4, it becomes apparent
that this is an important step for fuzzing research and develop-
ment. Each proposed optimization shines for specific targets
while it may perform less than ideal for others. the evaluation
shows this is a clear benefit, for performance, as well as for
comparability of research.

On top, AFL++ bridges the gap between academia and
industry, making academic advancements available to every-
body in an easy-to-use fashion. With the help of AFL++, a
wide variety of real-world bugs could already be uncovered
and patched, such as the bugs found by the community and
listed in Table 2.

Over the course of more than a year, we were able to
gain further insights into fuzzing thanks to the work put into
AFL++. This provided us with the opportunity to fine-tune the

An excerpt of public bugs found by the community using
AFLA++

Program Bugs
CVE-2019-14437
CVE-2019-14438
CVE-2019-14498
CVE-2019-14533
CVE-2019-14534
VLC CVE-2019-14535
CVE-2019-14776
CVE-2019-14777
CVE-2019-14778
CVE-2019-14779
CVE-2019-14970
Sqlite CVE-2019-16168
Vim CVE-2019-20079
CVE-2019-20176
CVE-2020-9274
CVE-2020-9365
CVE-2020-6162

Bftpd CVE-2020-6835 Antonio Morales

Discovered by

Antonio Morales

Xingwei Lin
Dhiraj

Pure-FTPd Antonio Morales

Tepdump CVE-2020-8036 Reza Mirzazade
CVE-2020-9272 .
ProFTPd CVE-2020-9273 Antonio Morales
Gifsicle Issue 130 Ashish Kunwar
FFmpeg TlckggsgiSZi,QES%, Andrea Fioraldi
Glibc Bug 25933 David Mendenhall

AFL++ parameters in AFL++ Optimal, showing the power of
the toolbelt in AFL++, available to everyone. With AFL++ as
a platform, we hope to give researchers a quick and easy start
to prototype and implement new ideas and strategies. The
Custom Mutator API plug-in system makes it easy to proto-
type new research ideas and offers industry professionals an
easy way to tailor test cases to their target, while still prof-
iting from academic research and features. Using its proxy,
it can even be adapted to completely new targets, servers,
embedded targets, and more. Hopefully, future research can
directly be based on AFL++’s APIs, further improving the
state-of-the-art.

In conclusion, we invite researchers to contribute to the
growth of AFL++ itself as a tool of interest for the community.
AFL++ is — and always will be — Free and Open Source
Software.

Acknowledgements We want to firstly thank the entire
community around AFL++ that during this year actively con-
tributed with patches, bugfixes and new features. Thanks
also to Jonathan Metzman, Abhishek Arya, and Lasz16 Szek-
eres for FuzzBench and the support provided to run AFL++
evaluations on it.

References

(1]
(2]

(3]

(4]

(5]

(6]

[7

[—)

(8]

(9]

[10]

[11]

[12]

[13]

Wine website. https://www.winehq.org/.

Circumventing Fuzzing Roadblocks with Compiler
Transformations. https://lafintel.wordpress.
com/2016/08/15/circumventing-fuzzing-
roadblocks-with-compiler-transformations/,

2016.

Tiny Code Generator (TCG). https://wiki.gemu.
org/Documentation/TCG, 2019.

Cornelius Aschermann, Sergej Schumilo, Ali Abbasi,
and Thorsten Holz. Ijon: Exploring deep state spaces
via fuzzing. In IEEE Symposium on Security and Pri-
vacy (Oakland), 2020.

Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. REDQUEEN:
fuzzing with input-to-state correspondence. In 26th
Annual Network and Distributed System Security Sym-
posium, NDSS, 2019.

Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia,
Camil Demetrescu, and Irene Finocchi. A survey of
symbolic execution techniques. ACM Computing Sur-
veys, 51(3):50:1-50:39, 2018.

Fabrice Bellard. Qemu, a fast and portable dynamic
translator. In Proceedings of the Annual Conference
on USENIX Annual Technical Conference, ATEC ’05,
pages 4141, Berkeley, CA, USA, 2005. USENIX As-
sociation.

Andrea Biondo. Improving AFL’s QEMU mode
performance. https://abiondo.me/2018/09/21/
improving-afl-gemu-mode, 2019.

Marcel Bohme. Entropic: Boosting LibFuzzer Perfor-
mance. https://reviews.llvm.org/D73776,2020.

Marcel Bohme, Valentin Mangs, and Sang Kil Cha.
Boosting fuzzer efficiency: An information theoretic
perspective. In Proceedings of the 14th Joint meeting
of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE, pages 1-11, 2020.

Marcel Bohme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as markov chain.
In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’16,
pages 1032-1043, New York, NY, USA, 2016. Associa-
tion for Computing Machinery.

Peng Chen and Hao Chen. Angora: Efficient fuzzing
by principled search. CoRR, abs/1803.01307, 2018.

S. Dinesh, Nathan Burow, Dongyan Xu, and Mathias

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

Payer. Retrowrite: Statically instrumenting cots binaries
for fuzzing and sanitization. In IEEE S&P 2020, 2020.

M. Eddington. Peach fuzzing platform. http://
community.peachfuzzer.com/WhatIsPeach.html.

Andrea Fioraldi, Daniele Cono D’Elia, and Emilio
Coppa. WEIZZ: Automatic grey-box fuzzing for struc-
tured binary formats. In Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2020, New York, NY, USA, 2020.
Association for Computing Machinery.

Andrea Fioraldi, Daniele Cono D’Elia, and Leonardo
Querzoni. Fuzzing binaries for memory safety errors
with QASan. In 2020 IEEE Secure Development Con-
ference (SecDev), 2020.

Ivan Fratric. WinAFL. https://github.com/
googleprojectzero/winafl, 2016.

Marc Heuse, Heiko Eif3feldt, Andrea Fioraldi, and
Dominik Maier. ~AFL++ Documentation. https:
//aflplus.plus/docs/, 2020.

Christian Holler. Holler’s AFL fork. https://github.
com/choller/afl.

Chin-Chia Hsu, Che-Yu Wu, Hsu-Chun Hsiao, and Shih-
Kun Huang. Instrim: Lightweight instrumentation for
coverage-guided fuzzing. 2018.

Tessier C. Hubain C. Implementing an LLVM based
dynamic binary instrumentation framework. https:
//gbdi.quarkslab.com/QBDI_34c3.pdf, 2017.

Laszl6 Szekeres Jonathan Metzman, Abhishek Arya.
FuzzBench: Fuzzer benchmarking as a service. Google
Security Blog, March 2020.

Chris Lattner. LLVM: An Infrastructure for Multi-Stage
Optimization. Master’s thesis, Computer Science Dept.,
University of Illinois at Urbana-Champaign, Urbana, IL,
Dec 2002. See http://11lvm.cs.uiuc.edu.

Caroline Lemieux and Koushik Sen. Fairfuzz: A tar-
geted mutation strategy for increasing greybox fuzz test-
ing coverage. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software En-
gineering, ASE 2018, pages 475-485, New York, NY,
USA, 2018. Association for Computing Machinery.

Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-
Han Lee, Yu Song, and Raheem Beyah. MOPT: Opti-
mized mutation scheduling for fuzzers. In 28th USENIX
Security Symposium (USENIX Security 19), pages 1949—
1966, Santa Clara, CA, August 2019. USENIX Associa-
tion.

Dominik Maier, Benedikt Radtke, and Bastian Har-

https://www.winehq.org/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://wiki.qemu.org/Documentation/TCG
https://wiki.qemu.org/Documentation/TCG
https://abiondo.me/2018/09/21/improving-afl-qemu-mode
https://abiondo.me/2018/09/21/improving-afl-qemu-mode
https://reviews.llvm.org/D73776
http://community.peachfuzzer.com/WhatIsPeach.html
http://community.peachfuzzer.com/WhatIsPeach.html
https://github.com/googleprojectzero/winafl
https://github.com/googleprojectzero/winafl
https://aflplus.plus/docs/
https://aflplus.plus/docs/
https://github.com/choller/afl
https://github.com/choller/afl
https://qbdi.quarkslab.com/QBDI_34c3.pdf
https://qbdi.quarkslab.com/QBDI_34c3.pdf

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

ren. Unicorefuzz: on the viability of emulation for
kernelspace fuzzing. In 13th USENIX Workshop on
Offensive Technologies (WOOT 19), 2019.

Dominik Maier, Lukas Seidel, and Shinjo Park.
BaseSAFE: BasebandSAnitized Fuzzing through Em-
ulation. In /3th ACM Conference on Security and
Privacy in Wireless and Mobile Networks (WiSec 20),
Linz (Virtual Event), Austria, July 2020.

Valentin J. M. Manes, HyungSeok Han, Choongwoo
Han, Sang Kil Cha, Manuel Egele, Edward J. Schwartz,
and Maverick Woo. The art, science, and engineering of
fuzzing: A survey. arXiv: Cryptography and Security,
2018.

Antonio Morales. Fuzzing software: common
challenges and potential solutions (Part 1) - GitHub
Security Lab. https://securitylab.github.com/
research/vlc-vulnerability-heap-overflow,
2020.

Anh Quynh Ngyuen and Hoang Vu Dang. Unicorn:
Next generation cpu emulator framework, 2020.

Tavis Ormandy. Making Software Dumb-
erer. http://taviso.decsystem.org/making_
software_dumber.pdf, 2009.

Rohan Padhye, Caroline Lemieux, Koushik Sen, Lau-
rent Simon, and Hayawardh Vijayakumar. Fuzzfactory:
Domain-specific fuzzing with waypoints. Proc. ACM
Program. Lang., 3(O0OPSLA), October 2019.

H. Peng, Y. Shoshitaishvili, and M. Payer. T-fuzz:
Fuzzing by program transformation. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 697—
710, May 2018.

V. Pham, M. Boehme, A. E. Santosa, A. R. Caciulescu,
and A. Roychoudhury. Smart greybox fuzzing. IEEE
Transactions on Software Engineering, 2019.

Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-
jocar, Cristiano Giuffrida, and Herbert Bos. Vuzzer:
Application-aware evolutionary fuzzing. In 24th Annual
Network and Distributed System Security Symposium,
NDSS, 2017.

Sergej Schumilo, Cornelius Aschermann, Robert Gaw-
lik, Sebastian Schinzel, and Thorsten Holz. Kafl:
Hardware-assisted feedback fuzzing for os kernels. In
Proceedings of the 26th USENIX Conference on Secu-
rity Symposium, SEC’17, pages 167-182, USA, 2017.
USENIX Association.

Edward J. Schwartz, Thanassis Avgerinos, and David
Brumley. All you ever wanted to know about dynamic
taint analysis and forward symbolic execution (but might
have been afraid to ask). In Proceedings of the 2010

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

IEEE Symposium on Security and Privacy, SP 2010,
pages 317-331, 2010.

Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitry Vyukov. Addresssanitizer:
A fast address sanity checker. In Proceedings of the
2012 USENIX Conference on Annual Technical Confer-
ence, USENIX ATC’ 12, page 28. USENIX Association,
2012.

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Audrey Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. SoK: (State of) The
Art of War: Offensive Techniques in Binary Analysis.
In IEEE Symposium on Security and Privacy, 2016.

Nathan Voss. afl-unicorn: Fuzzing arbitrary binary code,
October 2017.

Guido Vranken. libfuzzer-ng: enhanced fork of
libFuzzer. https://github.com/guidovranken/
libfuzzer-gv, 2017.

Guido Vranken. VrankenFuzz a multi-sensor,
multi-generator mutational fuzz testing engine.
https://guidovranken.files.wordpress.com/
2018/07/vrankenfuzz.pdf, 2018.

Jinghan Wang, Yue Duan, Wei Song, Heng Yin, and
Chengyu Song. Be sensitive and collaborative: Analyz-
ing impact of coverage metrics in greybox fuzzing. In
22nd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2019), pages 1-15,
Chaoyang District, Beijing, September 2019. USENIX
Association.

T. Wang, T. Wei, G. Gu, and W. Zou. Taintscope:
A checksum-aware directed fuzzing tool for automatic
software vulnerability detection. In 2010 IEEE Sym-
posium on Security and Privacy, pages 497-512, May
2010.

Wen Xu, Sanidhya Kashyap, Changwoo Min, and Tae-
soo Kim. Designing new operating primitives to im-
prove fuzzing performance. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS *17, pages 2313-2328, New York,
NY, USA, 2017. Association for Computing Machinery.

B. Yadegari and S. Debray. Bit-level taint analysis. In
2014 IEEE 14th International Working Conference on
Source Code Analysis and Manipulation (SCAM), pages
255-264, 2014.

Michat Zalewski. American Fuzzy Lop -
Whitepaper. https://lcamtuf.coredump.cx/afl/
technical details.txt, 2016.

https://securitylab.github.com/research/vlc-vulnerability-heap-overflow
https://securitylab.github.com/research/vlc-vulnerability-heap-overflow
http://taviso.decsystem.org/making_software_dumber.pdf
http://taviso.decsystem.org/making_software_dumber.pdf
https://github.com/guidovranken/libfuzzer-gv
https://github.com/guidovranken/libfuzzer-gv
https://guidovranken.files.wordpress.com/2018/07/vrankenfuzz.pdf
https://guidovranken.files.wordpress.com/2018/07/vrankenfuzz.pdf
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt

	Introduction
	Contributions

	State-of-the-Art
	American Fuzzy Lop
	Coverage Guided Feedback
	Mutations
	Forkserver
	Persistent Mode

	Smart Scheduling
	AFLFast
	MOpt

	Bypassing Roadblocks
	LAF-Intel
	RedQueen

	Mutate Structured Inputs
	AFLSmart

	A New Baseline for Fuzzing
	Seed Scheduling
	Mutators
	Custom Mutator API
	Input-To-State Mutator
	MOpt Mutator

	Instrumentations
	LLVM
	GCC
	QEMU
	Unicornafl
	QBDI

	Platform Support
	Snapshot LKM

	Evaluation Use Cases
	AFL++ Optimal

	Future Work
	Scaling
	Collision-Free instrumentation
	Static Analysis for Optimal Fuzz Settings
	Plug-in System

	Conclusion

