
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 31st USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

31st USENIX Security Symposium.
August 10–12, 2022 • Boston, MA, USA

978-1-939133-31-1

Open access to the Artifact Appendices
to the Proceedings of the 31st USENIX

Security Symposium is sponsored
by USENIX.

Creating a Secure Underlay for the Internet
Henry Birge-Lee, Princeton University; Joel Wanner, ETH Zürich;

Grace H. Cimaszewski, Princeton University; Jonghoon Kwon, ETH Zürich;
Liang Wang, Princeton University; François Wirz, ETH Zürich; Prateek Mittal,

Princeton University; Adrian Perrig, ETH Zürich; Yixin Sun, University of Virginia
https://www.usenix.org/conference/usenixsecurity22/presentation/birge-lee

A Artifact Appendix

A.1 Abstract
Our artifact consists of 1) the SBAS client and node code used
to operate the SBAS infrastructure 2) the simulation software
used in the security analysis section of the paper and 3) the
raw survey results and questions from our network operator
survey.

A.2 Artifact check-list (meta-information)
• Program: Our artifact contains two programs: 1) the SBAS

node and client software that is used to operate the SBAS infras-
tructure and connect clients respectively and 2) the topology
simulation software to run inter-domain topology simulations
are perform the security analysis.

• Compilation: The SBAS client and node must be compiled
and installed as per the instructions in the README.md file.
The README.md file (in the usenix22 branch) also contains
instructions for setting up a personal SBAS using two nodes
that are connected over SCIONLab (and have connectivity to
each other but are distinct from our current SBAS production
deployment). Additionally, the README.md file contains in-
structions for how to connect a client this SBAS deployment.
The topology simulator is written in python and can be run
directly on general-purpose computing hardware and requires
no compilation (although the script to graph the results requires
several pip and apt dependencies).

• Binary: The simulation code is in python (which is inter-
preted) so there is no binary, but the primary source code file
is simulate.py in the root directory of the simulation repo. The
SBAS client and node are largely python and bash scripts and
the repo contains an install script that installs SBAS as a sys-
temd service.

• Data set: Our SBAS client does not require any datasets. The
simulation artifact uses the CAIDA AS relationships dataset,
RIPE NCC and RouteViews BGP datasets, and PEERING
testbed connection data. Our survey result dataset is attached
as part of our artifact submission.

• Run-time environment: Our simulation requires python3
and the appropriate pip3 modules installed. While our code
should run on most Linux environments, all our testing was
done on Ubuntu 22.04 and this was used to generate the
required dependencies and install instructions mentioned in
the README.md files. We strongly encourage Ubuntu 22.04
as other variants might require different package dependencies
and even other Ubuntu versions ship with different versions of
python that could potentially impact script behavior.

• Hardware: Simulations are run using general purpose hard-
ware.

• Execution: The simulation models interdomain routing at-
tacks and outputs statistics about the security of SBAS nodes
which can be graphed as a CDF (see the README.md file in
the usenix22-simulations branch). The SBAS node and client
software install systemd services that manage routing rules

related to forwarding SBAS traffic and interact with the other
routing services SBAS depends on (e.g., the SCION-IP gate-
way and BIRD).

• Security, privacy, and ethical concerns: Simulations are run
on static data/configuration files and thus pose no burden on
the ASes and prefixes modeled therein. They are also based
entirely on publicly-available datasets. The SBAS node and
client software does not violate any networking best practices
and only sends IP packets for common well defined protocols.

• Output: The simulation outputs result files for standard and
ROV SBAS experiments. The SBAS node and client software
does not produce any output file per say but configures routing
such that secure prefixes and customers can be reached between
different SBAS nodes.

• How much disk space required (approximately)?: The
SBAS client and node software requires only minimal disk
space for dependencies to install. Running the abridged version
of the simulation requires under 1GB of disk space.

• How much time is needed to prepare workflow (approxi-
mately)?: Simulation workflow requires only time needed to
download the topology simulator repository.

• How much time is needed to complete experiments (approx-
imately)?: The simulation workflow requires roughly 1 hour
using a general purpose CPU.

• Publicly available (explicitly provide evolving ver-
sion reference)?: The artifact contents are hosted at
https://github.com/scion-backbone/sbas/tree/
80044509e5ac1681e8d970a09e4b3187439a0938. The
client and node software and configuration files are available
in the sbas submodule; the simulation code and data, in the
sbas-simulation submodule; and lastly, the survey results
in sbas-survey.

• Code licenses (if publicly available)?: CC Zero.

• Workflow frameworks used?: Github.

• Archived (explicitly provide DOI or stable refer-
ence)?: A stable link to our artifact is available at
https://github.com/scion-backbone/sbas/tree/
80044509e5ac1681e8d970a09e4b3187439a0938

A.3 Description

Obligatory. For inapplicable subsections (e.g., the “How to
access” subsection when not applying for the “Artifacts Avail-
able” badge), please specify ’N/A’.

A.3.1 How to access

Artifacts are available online at the URLs listed in A.2

A.3.2 Hardware dependencies

Standard computational hardware.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 165

https://github.com/scion-backbone/sbas/tree/80044509e5ac1681e8d970a09e4b3187439a0938
https://github.com/scion-backbone/sbas/tree/80044509e5ac1681e8d970a09e4b3187439a0938
https://github.com/scion-backbone/sbas/tree/80044509e5ac1681e8d970a09e4b3187439a0938
https://github.com/scion-backbone/sbas/tree/80044509e5ac1681e8d970a09e4b3187439a0938

A.3.3 Software dependencies

Python 3.7 and standard numerical/data science packages
(numpy, matplotlib, pandas). See README.md files for more
details on dependency installs (which can all be done with
standard packages).

A.3.4 Data sets

We rely on the CAIDA AS-relationship data set and BGP
update data from RIPE NCC and RouteViews, to generate the
policy files and topology used for the simulation.

A.3.5 Models

N.A.

A.3.6 Security, privacy, and ethical concerns

The simulations employ only publicly available datasets and
thus do not leak any private information about interdomain
connectivity.

A.4 Installation
Obligatory. Describe the setup procedures for your artifact
targeting novice users (even if you use a VM image or access
to a remote machine).

The full installation instructions for the node and
client are included in the sbas submodule under the
artifact repository at the URL given in A.2 (specifically,
https://github.com/scion-backbone/sbas/tree/
80044509e5ac1681e8d970a09e4b3187439a0938). The
installation for the simulation software is described in the
sbas-simulation submodule.

A.5 Experiment workflow
Describe the high-level view of your experimental workflow
and how it is implemented, invoked and customized (if needed),
i.e. some OS scripts, IPython/Jupyter notebook, portable CK
workflow, etc. This subsection is optional as long as the experi-
ment workflow can be easily embedded in the next subsection.

The BGP simulation framework takes three main files as
input:

1. CAIDA Topology: serial-2 AS Relationships topology

2. policies file: BGP export/import policies to be applied
to BGP announcement points

3. origins file: enumerates prefix announcements to be
made at BGP announcement points (including hijackers)

The simulation engine runs as a Python script and writes
the outcome of each simulation scenario to a text file. An-
other Python visualization script generates a CDF of the

simulation results similar to those presented in Figures 8
& 9 of the main paper. The full experimental workflow
for the simulations is described in the sbas-simulation sub-
module of https://github.com/scion-backbone/sbas/
tree/80044509e5ac1681e8d970a09e4b3187439a0938.

For the SBAS node software, the workflow involves join-
ing SCIONLab, connecting two machines to SCIONLab,
running SBAS on those two machines and testing con-
nectivity through SBAS and then connecting a client to
one of the machines and testing connectivity to the other
SBAS node. The full workflow is described in the sbas sub-
module of https://github.com/scion-backbone/sbas/
tree/80044509e5ac1681e8d970a09e4b3187439a0938

A.6 Evaluation and expected results

Obligatory. Start by listing the main claims in your paper.
Next, list your key results and detail how they each support
the main claims. Finally, detail all the steps to reproduce
each of the key results in your paper by running the artifacts.
Describe the expected results and the maximum variation
of empirical results (particularly important for performance
numbers).

We package a subsample of the data used in the Internet-
scale simulations (presented in Section 7.2) to model the
BGP hijack resiliency gains of SBAS provides over a client
making its own BGP announcements to the Internet. These
simulations should output textual data showing the proportion
of the Internet that will be affected by an adversary’s attack
for each SBAS announcement. This output is then parsed
by the plotting script plot_artifact_results.py to plot
CDFs illustrating the resilience of SBAS against different
adversaries.

There are several main results which can be seen in this
CDF plots even with the reduced input files used for the ar-
tifact evaluation. First, an SBAS announced-prefix has a sig-
nificantly higher resilience than a non-SBAS prefix. Second,
SBAS performance improves with additional nodes are added
to the network of PoPs. Finally, ROV enforcement further
improves the resilience of SBAS.

The primary expected result for the SBAS node code is
that the pings from one SBAS node’s VPN prefix to another
SBAS node’s VPN prefix (which are routed over SCIONLab)
are sent successfully. Furthermore, for the client code, the
client connected to the SBAS node should be able to ping the
VPN prefix at the other SBAS node securely which implies
it could communicate with other clients connected to that
node’s VPN.

166 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

https://github.com/scion-backbone/sbas/tree/80044509e5ac1681e8d970a09e4b3187439a0938
https://github.com/scion-backbone/sbas/tree/80044509e5ac1681e8d970a09e4b3187439a0938
https://github.com/scion-backbone/sbas/tree/80044509e5ac1681e8d970a09e4b3187439a0938
https://github.com/scion-backbone/sbas/tree/80044509e5ac1681e8d970a09e4b3187439a0938
https://github.com/scion-backbone/sbas/tree/80044509e5ac1681e8d970a09e4b3187439a0938
https://github.com/scion-backbone/sbas/tree/80044509e5ac1681e8d970a09e4b3187439a0938

A.7 Experiment customization

A.8 Notes

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 167

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

