
Stronger Semantics for Low-Latency Geo-Replicated Storage

Wyatt Lloyd?, Michael J. Freedman�, Michael Kaminsky†, and David G. Andersen‡

?�Princeton University, †Intel Labs, ‡Carnegie Mellon University
?wlloyd@cs.princeton.edu, �mfreed@cs.princeton.edu, †michael.e.kaminsky@intel.com, ‡dga@cmu.edu

?student, no demo planned

1 Extended Abstract
Large-scale data stores are a critical infrastructure compo-
nent of many Internet services. In this work, we address
the problem of building a geo-replicated data store tar-
geted at applications that demand fast response times.
Such applications are now common: Amazon, EBay, and
Google all claim that a slight increase in user-perceived
latency translates into concrete revenue loss

Providing low latency to the end-user requires two
properties from the underlying storage system. First, stor-
age nodes must be near the user to avoid long-distance
round trip times; thus, data must be replicated geographi-
cally to handle users from diverse locations. Second, the
storage layer itself must be fast: client reads and writes
must be local to that nearby datacenter and not traverse
the wide area. Geo-replicated storage also provides the
important benefits of availability and fault tolerance.

Beyond low latency, many services benefit from a rich
data model. Key-value storage—perhaps the simplest
data model provided by data stores—is used by a number
of services today The simplicity of this data model, how-
ever, makes building a number of interesting services
overly arduous, particularly compared to the column-
family data models offered by systems like BigTable nd
Cassandra These rich data models provide hierarchical
sorted column-families and numerical counters. Column-
families are well-matched to services such as Facebook,
while counter columns are particularly useful for numer-
ical statistics, as used by collaborative filtering (Digg,
Reddit), likes (Facebook), or re-tweets (Twitter).

Unfortunately, to our knowledge, no existing geo-
replicated data store provides guaranteed low latency,
a rich column-family data model, and stronger consis-
tency semantics: consistency guarantees stronger than
the weakest choice—eventual consistency—and support
for atomic updates and transactions. This work presents
Eiger a system that achieves all three properties.

The consistency model Eiger provides is tempered by
impossibility results: the strongest forms of consistency—

such as linearizability, sequential, and serializability—
are impossible to achieve with low latency that is, latency
less than the network delay between datacenters). Yet,
some forms of stronger-than-eventual consistency are
still possible and useful, e.g., causal consistency and
they can benefit system developers and users. In addi-
tion, read-only and write-only transactions that execute a
batch of read or write operations at the same logical time
can strengthen the semantics provided to a programmer.

A key challenge of this work is to meet these three
goals while scaling to a large numbers of nodes in a
single datacenter, which acts as a single logical replica.
Traditional solutions in this space such as Bayou assume
a single node per replica and rely on techniques such as
log exchange to provide consistency. Log exchange,
however, requires serialization through a single node,
which does not scale to multi-node replicas.

Our Eiger system is a scalable geo-replicated data
store that achieves our three goals. Like COPS, Eiger
tracks dependencies to ensure consistency; instead of
COPS’ dependencies on versions of keys, however, Eiger
tracks dependencies on operations. Yet, its mechanisms
do not simply harken back to the transaction logs com-
mon to databases. Unlike those logs, Eiger’s operations
may depend on those executed on other nodes, and an
operation may correspond to a transaction that involves
keys stored on different nodes.

The contributions of this work are as follows:

• The design of a low-latency, causally-consistent data
store based on a column-family data model, including
all the intricacies necessary to offer abstractions such
as column families and counter columns.

• A novel non-blocking read-only transaction algo-
rithm that is both performant and partition tolerant.

• A novel write-only transaction algorithm that atomi-
cally writes a set of keys, is lock-free (low latency),
and does not block concurrent read transactions.

• An evaluation that shows Eiger has performance com-
petitive to eventually-consistent Cassandra.

1


	Extended Abstract

