UBCIS: Ultimate Benchmark for Container Image Scanning

Shay Berkovich
BlackBerry Limited

Abstract

Containers are regularly used in modern cloud-native deploy-
ment practices. They support agile and continuous integra-
tion/continuous deployment (CI/CD) paradigms, isolating ser-
vices. As containers become more ubiquitous, container se-
curity becomes crucial as well. Scanning container images
for known vulnerabilities caused by vulnerable software is a
critical security activity of the CI/CD process. Both commer-
cial and open-source tools exist for container image scanning.
Results from these scanners, however, are inconsistent. In-
consistent results make it hard for developers to choose the
best solution for their environment. In this paper, we present
the Ultimate Benchmark for Container Image Scanning (UB-
CIS), a benchmark for evaluating image scanners. UBCIS
contains a classification of known vulnerabilities in common
base container images, as well as a framework for running
container vulnerability scanning tools. UBCIS makes it possi-
ble to evaluate scanners. We discuss intricacies of classifying
vulnerabilities, presenting a process that can be used when de-
termining the relevance of vulnerability. Finally, we provide
recommendations for choosing the best scanner for a specific
environment.

1 Introduction

Many container image vulnerability scanning tools are being
introduced by commercial and open-source groups. Container
image vulnerability scanning is focused on finding instances
of already-known vulnerabilities in binaries on the system.
This is in contrast to many vulnerability scanning tools (e.g.,
static analysis), which are focused on finding new or undis-
covered vulnerabilities. This is also in contrast to detecting
malicious container interactions [23].

Docker encourages container image reuse by making it easy
to obtain base images and extend them. There are multiple
registries hosting public images, including Docker Hub [8],
GCR [11], and Quay [21]. However, the same reasons that
facilitate rapid container adoption also increase the risk of us-
ing vulnerable software. Zerouali et. al. [29] suggest over half

Jeffrey Kam
University of Waterloo

Glenn Wurster
BlackBerry Limited

of the images hosted on Docker Hub have not been updated in
four months or more, and that one out of every five installed
packages in a container is outdated. Shu et. al. [22] document
no significant difference between community and official im-
ages. The same study shows that using latest images [18]
does not eliminate the need for scanning. Using a tool to scan
for known vulnerabilities in your image is therefore critical
to the security of the system.

The Ultimate Benchmark for Container Image Scanning
(UBCIS) is designed to evaluate the precision, recall, and
F-measure of container image vulnerability scanning tools.
We address two main problems with this work. The first is
the classification of vulnerabilities detected by scanning tools.
Our work subdivides container image vulnerabilities based on
their applicability to the container image. The second problem
addressed is providing a framework that can be used to assess
new scanning tools. We measure the ability of a scanner to
detect vulnerabilities caused by out-of-date applications.

Our contributions are 1) a benchmark tool for container
scanner evaluation; 2) an evaluation of three popular scanners
on common container images; 3) a vulnerability judging pro-
cess for classifying vulnerabilities; 4) a set of vulnerabilities
which have been judged and can be used with the benchmark
tool to evaluate scanners; 5) recommendations for choosing
a scanner; and 6) an in-depth analysis of how scanners inter-
pret different vulnerability classes and how that interpretation
affects the precision, recall, and F-measure of the scanner.
This benchmark has solved the problem of choosing the best
scanner for our production container deployments.

In addition to being used within corporate environments to
choose the right container scanning tool, UBCIS can also be
used in studies that require container image scanning. Current
studies use specific open-source scanners as a single source
of truth on the number and type of vulnerabilities in the con-
tainer image [14,15,22,24]. As we show, results vary between
scanners, potentially affecting studies suppositions. UBCIS
will empower scholars to choose the appropriate image vul-
nerability scanner when engaging in related research.

In Section 2, we discuss applicability classes for vulnera-

bilities a scanner detects. We create a benchmark and evaluate
three scanners in Section 3. Section 4 documents our observa-
tions and recommendations. Section 5 contains related work.
We conclude in Section 6.

2 Classification of Vulnerabilities

Scanning for known vulnerabilities in a container image in-
volves three steps: (1) identifying all components (e.g., ex-
ecutables, libraries, scripts) of the image, along with their
version; (2) given the list of components, querying security
feeds for applicable vulnerabilities; and (3) reporting each
vulnerability affecting a component in the container image.
The following list highlights why different scanners may give
different results:

e Most scanners query the package manager, while few per-
form binary analysis. The two approaches might cause
different versions to be detected.

e While common vulnerabilities can be found in a sin-
gle vulnerability feed such as National Vulnerability
Database (NVD) [20], most scanners employ a set of
vulnerability feeds (including some commercial) to use
as many sources of potential vulnerabilities as possi-
ble. The list of feeds, along with the feed prioritization,
differs greatly from scanner to scanner.

e Some scanners authors curate vulnerability feeds, lead-
ing to a lag in time between the vulnerability being
known and being reported by a specific scanner.

e Ambiguity - It is sometimes unclear whether a vulner-
ability exists in an open source component, or if it is
present in the component as deployed in the container.
Scanners authors can weight vulnerability feed infor-
mation differently when deciding whether to report a
vulnerability in a container.

Consider debian:10.2, a popular and widely-adopted base
image. Running four different scanners on this image results
in four different sets of vulnerabilities. No set is a superset
or a subset of another, no set encompasses all image vulner-
abilities, and every set contains at least one false positive.
Customers looking to procure an image scanner may not
choose the best tool for their environment if they merely look
at the number of detected vulnerabilities without considering
other factors.

2.1 Applicability Classes

To quantify the impact of scanner design choices, we ran
four different scanners on three different container images,
manually examining each detected vulnerability. Based on
this analysis, we have identified several applicability classes
for vulnerabilities detected by a scanning tool, expanding
on GitHub [12]. We call classes (I, MM, and D) ambiguous
classes.

TP / True Positive - Vulnerability is present in the container.

I /Inconclusive — It is not clear whether the vulnerability
is present. There might be insufficient information to
confirm the presence of the vulnerability. Newly discov-
ered vulnerabilities that have not yet been examined and
added to the UBCIS database fall into this class.

MM/ Version Mismatch — Vulnerability where different
feeds disagree on fixed or affected package versions (e.g.,
NVD lists CVE-2018-12886 [5] as affecting version 4.1
through version 8. It is unclear whether 8.8 would be
within this range. In our testing, 50% of scanners re-
ported the issue).

D / Disputed — Vulnerability that is disputed by maintainers
(e.g., CVE-2019-9192 [6]).

FP / False Positive — Vulnerability is not applicable to the
container image. This can be due to differences in pack-
aging for the distribution, or back-ported fixes.

3 Scanner Evaluation

The most obvious scanner evaluation metric is how many
vulnerabilities are reported. This metric in isolation is error
prone. A better metric of the scanner success is the Rele-
vant vulnerabilities detected by the scanner under evalua-
tion as true positives (TP), with not-relevant vulnerabilities
being false positives (FP). Relevant vulnerabilities not de-
tected by the scanner are false negatives (FN). Precision is
defined as the fraction of retrieved vulnerabilities that are
in fact relevant, or Precision = TP/(TP + FP). Recall is
the fraction of relevant vulnerabilities detected by the scan-
ner, or Recall = TP/(TP + FN). The F-measure character-
izes the combined performance of recall and precision, or
F-measure = (2 * Recall Precision) /(Recall + Precision).
We use these three metrics to assess scanner quality.

3.1 Docker Image Choice

Debian, Alpine and Ubuntu make up over 87% of docker base
images on Docker Hub [24]. CentOS, Buildroot and Fedora
lag significantly. Image pull numbers confirm the popularity
of Debian, Alpine, and Ubuntu [15,24]. We use these three
distributions in our evaluation, supporting them in UBCIS.
To choose a specific image, we need to choose a tag. Within
the registry, every container image can be uniquely described
by the tuple repo-name:tag, where repo-name is the name
of the image and tag is the version. For OS-level base images,
repo-name is always the distribution and tag is usually the
distribution version (e.g., debian:buster, ubuntu:18.04,
or alpine:3.10). The latest tag denotes the most recent
rolling image version. We choose images in Table | that are
stable (not latest), but also popular, being used in current
deployments so that the scanner evaluation is relevant.
Another good reason to choose popular images is to prevent
scanners from gaming the system. Any scanner that scores

well in the benchmark tests will, by definition, score well on
the majority of real-world images. By benchmarking scanners,
we encourage continual improvement on real-world data sets.

Image Repo Pulls Last Update
debian:10.2 100M | February 3, 2020
alpine:3.9.4 1B June 19, 2019
ubuntu:18.10 1B July 23, 2019

Table 1: Images used for the benchmark

While a stable image will not change, the list of vulnerabil-
ities found against this image will change over time. Newly
discovered vulnerabilities will impact the stable image, requir-
ing periodic benchmark regeneration. We use Vagrant [28] to
automate the process.

3.2 Process

To build the benchmark, we merged the findings of multi-
ple scanners; Anchore [2], Trivy [26], Clair [4], and a binary
scanner. Anchore, Trivy, and Clair all use the container pack-
age manager to obtain a list of installed software. The binary
scanner attempts to detect binaries and their version numbers
without using the package manager. Different component re-
trieval techniques ensure better coverage of detected packages
and thus better coverage of discovered vulnerabilities.

We ran the scanners in their default configuration, ensuring
feeds are available. For each vulnerability reported by each
scanner in each image, we manually judge the vulnerability to
determine its applicability class (see Section 2.1), generating
a list of all vulnerabilities found by any scanner. Overall, we
judged 146 vulnerabilities for Debian, Alpine, and Ubuntu
images.

We call the process of classifying the reason for the de-
tected vulnerability the vulnerability judging process. This
process is manual and non-trivial. We perform the following
sequence of steps, in order, until we have a result:

DO Determine the package name, version, and metadata.

D1 Is the vulnerability already triaged? If so, use the result.

D2 Is the vulnerability language or distribution specific?
We ignore vulnerabilities in language specific package
repositories such as NPM, PIP, or Ruby Gems at this
point in time.

D3 Is the vulnerable package detected by the scanner empty?
If so, mark as a false positive.

D4 Is the vulnerability applicable to the distribution? If not,
mark as a false positive.

D5 Is the vulnerability fixed in the distribution? If so, mark
as false positive. If not, mark as a true positive.

Step D3 is interesting as some scanners flag a meta-package
(i.e., a package without content) as containing a vulnerability.
This vulnerability is a False Positive as there is no code that
can be vulnerable (e.g., 1ibc-utils in Alpine flagged by

some scanners is an empty/meta package [17]). Step D4 is a
common source of variance between scanners. Reasons range
from wrong operating system (e.g., a Windows vulnerability
in Linux-based distros), to specific distro-level package usage
that changes the applicability of the vulnerability. The relevant
information in a vulnerability feed does not follow a standard
format. It can appear in multiple places, causing discrepancies.
D5 is another source of variance between scanners because
they fail to recognize backports and ad-hoc fixes, leading to
false positives. If questions raised in D4 and D5 cannot be
answered, the vulnerability will fall into an ambiguous class
(Section 2.1).

We choose to put more weight in distribution-specific secu-
rity feeds (i.e., Debian Security Tracker [7], Alpine-secdb [1],
or Ubuntu CVE Tracker [27]) than in general security feeds
like NVD [20]. Distribution-specific feed maintainers have
more information and expertise to determine what is applica-
ble in their case.

3.3 Benchmark Modes

To generate precision, recall, and F-measure metrics, all am-
biguous classes must be mapped to either false positives or
false negatives. We define two modes of benchmark evalu-
ation: paranoid and relaxed. Paranoid mode maps ambigu-
ous classes to true positives. Relaxed mode maps ambigu-
ous classes to false positives. Choosing paranoid or relaxed
mode when evaluating scanner results will depend on the risk
tolerance of the company using the scanner, impacting the
benchmark evaluation and result.

l [Trivy Anchore Clair l

True Positives 42 22 37

Inconclusive 6 7 7

Debian 10.2 Mismatch 4 1 4
Disputed 2 2 2

False Positives 0 0 2
Total 54 32 52

True Positives 5 5 1

Inconclusive 0 0 0

Alpine 3.9.4 Mismatch 0 0 0
Disputed 0 0 0

False Positives 0 0 0

Total 5 5 1
True Positives 0 11 10

Inconclusive 0 5 4

Ubuntu 18.10 Mismatch 0 6 5
Disputed 0 0 0

False Positives 0 2 2

Total 0 24 21

Table 2: Vulnerability totals and groups per scanner/image.

4 Observations

Table 2 shows the results of three scanners. The total number
of detected unique vulnerabilities differ wildly, highlighting

Trivy Anchore Clair
Precision Recall =~ F-measure | Precision Recall F-measure | Precision Recall F-measure
Debian 10.2 Re]axefi 0.78 0.98 0.87 0.69 0.51 0.59 0.71 0.86 0.78
Paranoid 1.00 0.69 0.82 1.00 0.41 0.58 0.96 0.64 0.77
Alpine 3.9.4 Relaxed 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.20 0.33
Paranoid 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.20 0.33
Ubunta 18.10 Relaxed NA 0.00 NA 0.46 0.73 0.56 0.48 0.67 0.56
Paranoid NA 0.00 NA 0.92 0.42 0.57 0.90 0.36 0.51

Table 3: Precision, Recall and F-measure per scanner per benchmark mode.

the impact of choices discussed in Section 2. Furthermore,
unsupported images are a real problem. Although we were
planning on including Fedora, we discovered during testing
that most scanners did not support it. Also, Trivy does not
support Ubuntu 18.10.

Many vulnerabilities on debian:10.2 and ubuntu:18.10
fall into ambiguous classes based on manual analysis. The
high number of vulnerabilities falling into ambiguous classes
in Table 2 highlights the significance of relaxed and paranoid
mode in Table 3 . With only two options available (report
or ignore), scanners address inconclusive results by expand-
ing vulnerability severity scale to include values such as Un-
known, Negligible or Unimportant. By including inconclusive
results, the scanner defers analysis to the customer.

Table 3 shows that the best scanner for Debian would be
Trivy in both relaxed and paranoid mode. For Alpine, Anchore
and Trivy are equally good. For Ubuntu, Anchore and Clair
show similar results.

No scanner is best for all combinations of images and
benchmark modes. Companies exploring the purchase of an
image scanner should follow these recommendations:

1. Assess risk tolerance. Can we afford to miss vulnerabili-
ties (relaxed mode), or must we treat all vulnerabilities
as potentially critical (paranoid mode)? Scanners with
a better paranoid mode score will generally raise more
alerts, requiring more resources.

2. Look at the deployment environment. What base image
are we using? Is the image supported by the scanner?

3. Based on risk (#1) and base image (#2), use the bench-
mark results (Table 3) to select the appropriate scanner.

4. From our experience, no image had zero vulnerabilities.
A lack of vulnerabilities points to configuration problems
or an unsupported image.

5. Combining multiple scanners in a CI/CD pipeline is a
good idea. In paranoid mode, we suggest using the union
of all scan results. In relaxed mode, use the intersection.

If the evaluated scanner is not in the benchmark, it can be
added. Section 6 has links to the open-sourced benchmark.

5 Related Work

Research on benchmarking security tools is limited. El et.
al. [9] discuss benchmarks for web vulnerability scanners, a

difficult task due to vast landscape of web applications as well
as multitude of potential web vulnerabilities and vulnerability
classes. Nevertheless, Chen [3] attempts to benchmark web
vulnerability scanners. UBCIS appears to be the first work
that benchmarks container image scanners, although the CIS
benchmark does exist to address run-time container security
configuration best practices [13].

Studies of vulnerability classification are common, espe-
cially ones examining vulnerability type [10, 19]. Moreover,
meta-studies and surveys are available that analyze existing
vulnerability classification schemes [16,25]. We are not aware
of any studies that focus on the applicability of detected vul-
nerabilities. Our work focuses on the applicability, highlight-
ing that mis-identification of vulnerabilities can be for several
different reasons (see Section 2.1). Mapping of vulnerabilities
to either TPs or FPs is an important environmental decision.

6 Conclusion and Future Work

In this paper we discuss UBCIS, a tool created to evaluate the
precision, recall, and F-measure of image scanners against
base image distributions. We used UBCIS, evaluating three
scanning tools against three of the most popular base images.
We created a judging process for candidate vulnerabilities,
manually evaluated all identified vulnerabilities to determine
their relevance. Evaluation results can be applied immediately.

Correlating vulnerabilities between libraries will give a
more granular picture of scanner detection. Such correlation
is future work, as is extending the benchmark to deal with
language specific package repositories (e.g., NPM, PIP, Ruby
Gems). The dynamic nature of packages in these repositories,
along with the number of vulnerabilities, presents a challenge.

Expanding the benchmark to include more images (e.g.,
CentOS) is future work. The open-source UBCIS bench-
mark will be available along with the vulnerability classifi-
cation at https://github.com/blackberry/UBCIS, allow-
ing others to use and build on UBCIS. Benchmark results will
need to be regenerated as new vulnerabilities are judged, and
as scanners improve. We have automated the process except
for vulnerability judging.

https://github.com/blackberry/UBCIS

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

Alpine Security Databse v3.9 CVE List.
YAML Object (accessed 14 May, 2020).
https://github.com/alpinelinux/alpine-
secdb/blob/master/v3.9/main.yaml.

GitHub - Anchore Engine. Web Page (accessed 14 May,
2020). https://github.com/anchore/anchore-
engine.

Shay Chen. WAVSEP 2017/2018- Evaluating DAST
against PT/SDL Challenges. Technical report, 2018.
http://sectooladdict.blogspot.com/2017/11/
wavsep-2017-evaluating-dast-against.html.

GitHub - Clair. Web Page (accessed 14 May, 2020).
https://github.com/quay/clair.

CVE-2018-12886. Web Page (accessed 17 May,
2020). https://nvd.nist.gov/vuln/detail/CVE-
2018-12886.

CVE-2019-9192 - Debian Bug Tracker. Web Page (ac-
cessed 14 May, 2020). https://security-tracker.
debian.org/tracker/CVE-2019-9192.

Debian Security Bug Tracker. https://security-
tracker.debian.org/tracker/.

Docker Hub. Web Page (accessed 14 May, 2020).
https://hub.docker.com/.

Malaka El, Emma McMahon, Sagar Samtani, Mark Pat-
ton, and Hsinchun Chen. Benchmarking vulnerability
scanners: An experiment on scada devices and scientific
instruments. In 2017 IEEE International Conference on
Intelligence and Security Informatics (ISI), pages 83—88.
IEEE, 2017.

Sophie Engle, Sean Whalen, Damien Howard, and
Matt Bishop. Tree approach to vulnerability clas-
sification. Technical Report CSE-2006-10, Depart-
ment of Computer Science, University of California,
Davis, 2015. http://nob.cs.ucdavis.edu/bishop/
notes/2006-cse-10/2006-cse-10.pdf.

Google container registry. Web Page (accessed 14 May,
2020). https://cloud.google.com/container—
registry.

Why does my security scanner show that an image
has CVEs? Web Page (accessed 14 May, 2020).
https://github.com/docker-1library/fag#why-
does-my-security-scanner-show-that-an-
image-has-so-many-cves.

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

P Goyal. CIS Docker Community Edition Benchmark.
Technical report, Center for Internet Security. https:
//www.cisecurity.org/benchmark/docker/.

Jayanth Gummaraju, Tarun Desikan, and Yoshio
Turner. Over 30% of official images in Docker
hub contain high priority security vulnerabili-
ties. Technical report, BanyanOps, 2015. https:
//blog.banyansecurity.io/blog/over—-30-of-
official-images-in-docker-hub-contain-
high-priority-security-vulnerabilities.

Oscar Henriksson and Michael Falk. Static vulnerability
analysis of Docker images. Master’s thesis, Blekinge
Tekniska Hogskola, 2017.

Shuyuan Jin, Yong Wang, Xiang Cui, and Xiaochun
Yun. A review of classification methods for network
vulnerability. In 2009 IEEE International Conference
on Systems, Man and Cybernetics, pages 1171-1175.
IEEE, 2009.

Alpine Linux Packages - libc-utils meta pack-
age. Web Page (accessed 14 May, 2020).
https://pkgs.alpinelinux.org/package/edge/
main/x86_64/1libc-utils.

Dan Lorenc and Maya Kaczorowski. Exploring
container security: Let Google do the patching with
new managed base images. Technical report, Google
Cloud, 2018. https://cloud.google.com/blog/
products/containers-kubernetes/exploring-
container-security-let-google-do-the-
patching-with-new-managed-base-images.

Robert A Martin. Common Weakness Enumeration.
Presentation Slides (accessed 15 May, 2020), May
2017. http://sqgne.org/presentations/2006-
07/Martin-May-2007.pdf.

National Vulnerability Database (NVD). Web Page
(accessed 14 May, 2020). https://nvd.nist.gov/.

Quay container registry. Web Page (accessed 14 May,
2020). https://quay.io.

Rui Shu, Xiaohui Gu, and William Enck. A study of
security vulnerabilities on Docker hub. In Proceedings
of the Seventh ACM on Conference on Data and Appli-
cation Security and Privacy, pages 269-280, 2017.

Sari Sultan, Imtiaz Ahmad, and Tassos Dimitriou. Con-
tainer security: Issues, challenges,and the road ahead.
IEEE Access, May 2019.

https://github.com/alpinelinux/alpine-secdb/blob/master/v3.9/main.yaml
https://github.com/alpinelinux/alpine-secdb/blob/master/v3.9/main.yaml
https://github.com/anchore/anchore-engine
https://github.com/anchore/anchore-engine
http://sectooladdict.blogspot.com/2017/11/wavsep-2017-evaluating-dast-against.html
http://sectooladdict.blogspot.com/2017/11/wavsep-2017-evaluating-dast-against.html
https://github.com/quay/clair
https://nvd.nist.gov/vuln/detail/CVE-2018-12886
https://nvd.nist.gov/vuln/detail/CVE-2018-12886
https://security-tracker.debian.org/tracker/CVE-2019-9192
https://security-tracker.debian.org/tracker/CVE-2019-9192
https://security-tracker.debian.org/tracker/
https://security-tracker.debian.org/tracker/
https://hub.docker.com/
http://nob.cs.ucdavis.edu/bishop/notes/2006-cse-10/2006-cse-10.pdf
http://nob.cs.ucdavis.edu/bishop/notes/2006-cse-10/2006-cse-10.pdf
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://github.com/docker-library/faq#why-does-my-security-scanner-show-that-an-image-has-so-many-cves
https://github.com/docker-library/faq#why-does-my-security-scanner-show-that-an-image-has-so-many-cves
https://github.com/docker-library/faq#why-does-my-security-scanner-show-that-an-image-has-so-many-cves
https://www.cisecurity.org/benchmark/docker/
https://www.cisecurity.org/benchmark/docker/
https://blog.banyansecurity.io/blog/over-30-of-official-images-in-docker-hub-contain-high-priority-security-vulnerabilities
https://blog.banyansecurity.io/blog/over-30-of-official-images-in-docker-hub-contain-high-priority-security-vulnerabilities
https://blog.banyansecurity.io/blog/over-30-of-official-images-in-docker-hub-contain-high-priority-security-vulnerabilities
https://blog.banyansecurity.io/blog/over-30-of-official-images-in-docker-hub-contain-high-priority-security-vulnerabilities
https://pkgs.alpinelinux.org/package/edge/main/x86_64/libc-utils
https://pkgs.alpinelinux.org/package/edge/main/x86_64/libc-utils
https://cloud.google.com/blog/products/containers-kubernetes/exploring-container-security-let-google-do-the-patching-with-new-managed-base-images
https://cloud.google.com/blog/products/containers-kubernetes/exploring-container-security-let-google-do-the-patching-with-new-managed-base-images
https://cloud.google.com/blog/products/containers-kubernetes/exploring-container-security-let-google-do-the-patching-with-new-managed-base-images
https://cloud.google.com/blog/products/containers-kubernetes/exploring-container-security-let-google-do-the-patching-with-new-managed-base-images
http://sqgne.org/presentations/2006-07/Martin-May-2007.pdf
http://sqgne.org/presentations/2006-07/Martin-May-2007.pdf
https://nvd.nist.gov/
https://quay.io

[24]

[25]

[26]

Byungchul Tak, Hyekyung Kim, Sahil Suneja, Canturk
Isci, and Prabhakar Kudva. Security analysis of con-
tainer images using cloud analytics framework. In Inter-
national Conference on Web Services, pages 116-133.
Springer, 2018.

Anshu Tripathi and Umesh Kumar Singh. Taxo-
nomic analysis of classification schemes in vulnerability
databases. In 2011 6th International Conference on
Computer Sciences and Convergence Information Tech-
nology (ICCIT), pages 686-691. IEEE, 2011.

GitHub - Aqua Security Trivy. Web Page (accessed 14
May, 2020). https://github.com/aquasecurity/
trivy.

[27] Ubuntu CVE Tracker. Web Page (accessed 14 May,
2020). https://people.canonical.com/~ubuntu-
security/cve/.

[28] HashiCorp Vagrant. Web Page (accessed 19 May, 2020).
https://www.vagrantup.com/.

[29] Ahmed Zerouali, Tom Mens, Gregorio Robles, and Je-
sus M Gonzalez-Barahona. On the relation between
outdated docker containers, severity vulnerabilities, and
bugs. In 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages

491-501. IEEE, 2019.

https://github.com/aquasecurity/trivy
https://github.com/aquasecurity/trivy
https://people.canonical.com/~ubuntu-security/cve/
https://people.canonical.com/~ubuntu-security/cve/
https://www.vagrantup.com/

	Introduction
	Classification of Vulnerabilities
	Applicability Classes

	Scanner Evaluation
	Docker Image Choice
	Process
	Benchmark Modes

	Observations
	Related Work
	Conclusion and Future Work

