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Abstract

Data access is swiftly becoming a bottleneck in visual
data processing, providing an opportunity to influence
the way visual data is treated in the storage system. To
foster this discussion, we identify two key areas where
storage research can strongly influence visual process-
ing run-times: efficient metadata storage and new stor-
age formats for visual data. We propose a storage ar-
chitecture designed for efficient visual data access that
exploits next generation hardware and give preliminary
results showing how it enables efficient vision analytics.

1 Introduction

Data access is already becoming a bottleneck in visual
data processing [11]. As the amount of visual data grows,
it is becoming common for much of that data to be pro-
cessed and analyzed by computers rather than seen by a
human. This means there is an early opportunity to in-
fluence the way visual data is treated in the storage sys-
tem. Unfortunately, there is an inherent segregation of
research in computer science: vision researchers don’t
have the expertise to design a storage solution to meet
their needs and storage researchers don’t have the exper-
tise to know how storage could impact visual processing.

We’ve identified two key areas where storage research
can strongly influence visual processing run-times: effi-
cient metadata storage and analysis friendly storage for-
mats for visual data. Using metadata to provide a subset
of relevant data reduces the amount of data that has to
be processed as well as reducing data movement in the
system, while new storage formats could provide faster
transfer and processing of visual data. We are propos-
ing a new architecture tailored for visual data that ad-
dresses the need to find relevant data and retrieve it ef-
ficiently. Our architecture stores visual data in analysis
friendly formats, and efficiently identifies and retrieves
relevant data by searching metadata that has been stored
in a graph database.

To illustrate these two areas, we consider image clas-
sification, a basic component of vision research where a

neural network is used to identify what the image con-
tains. Suppose you want to find all the photos on your
computer that contain your dog: given those photos,
a pretrained neural network can identify which images
contain a dog [27]. While the neural network will iden-
tify all objects in an image with some confidence, gener-
ally only the relevant information is kept: you want pho-
tos that have a 90% probability of containing your dog,
not a 2% probability. However, if you then want to find
images that contain your cat, a common approach is to
run the neural network again, an approach which is not
scalable. Storing the confidence values of image/object
relations as metadata eliminates the need to process the
same images with the same neural network again.

Another common practice in vision research is to keep
visual data in its original format in the system rather than
in a format to aid with analysis. Storing the visual data in
a different form is rarely considered due to the belief that
storage isn’t an issue, because the time that it takes to
read the data from the file system is dwarfed by the time
spent in the neural network for classification. Running
a neural network with different generations of hardware,
the details of which are found in Section 4, proved that
this hypothesis is not correct as shown in Figure 1.
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Figure 1: The newer generation of hardware (Haswell)
with optimized software results in a 2.7x speedup in total
time, and causes the neural network to run faster than the
data is accessed.



In the rest of the paper, we give a brief explanation
of how image classification works and present a case for
storing visual metadata as a property graph. We outline
our storage architecture and give preliminary results. It
is our goal not only to develop a storage architecture de-
signed for visual data with a focus on enabling analysis,
but also to spark thought and discussion about this prob-
lem in the storage community.

2 Background and Related Work

Given our architecture is designed to enable better visual
data analysis, we present a brief explanation of image
classification, a common image processing operation, to
provide clarity for our architectural design. For the sake
of brevity we only present work relating to image pro-
cessing in this paper, though our architecture can handle
all types of visual data.

Image Classification In machine learning, a convolu-
tional neural network is a type of feed-forward artificial
neural network where the input is generally assumed to
be an image [29]. One use for convolutional neural net-
works (and our use case in this paper) is image classifica-
tion, where the goal is to determine with some confidence
which classes the image contains.

A neural network is trained for a specific classifica-
tion task using a set of images where the classes have
been labeled, and provides the probability that an im-
age contains each object class. Several end-to-end ma-
chine learning frameworks such as Caffe [17] and Ten-
sorflow [1] have been developed that provide a complete
toolkit for training, testing, finetuning, and deploying
neural networks. Common practice is to start with a pre-
trained network that works best with the desired class set
and finetune it for a specific set of data.

Images are loaded from the storage system into the
framework for processing, a step that is largely over-
looked because of the belief that storage is not an is-
sue. However, as hardware improves and software is op-
timized for vision processing algorithms, the data access
begins to dominate the total time in the framework (as
seen in Figure 1). In addition to finding a way to store
images such that access time decreases, it is important to
figure out how to search images as well [25]. Given large
data sets, such as the one hundred million images in the
YFCC100M dataset [30], having the ability to identify a
subset of relevant images with a metadata query would
be beneficial.

Visual Metadata as a Graph The output of a convolu-
tional neural network for image classification associates
a vector of values with an image that correspond to the

probability of an object existing in the image. Generally,
this information is used for the task at hand and then dis-
carded; an image with a dog and a cat would have a prob-
ability for both, but if the goal is to find images with dogs
the other information will be lost, preventing future use.

Given an image can contain one or more objects, other
relationships become apparent: an image may be taken
at a specific location as shown in Figure 2. Additionally,
the way people interact with visual data focuses on the
relationships (“find all the images that were taken at lo-
cation Y that contain person A”), causing retrieval of this
data from a different kind of database to be less efficient.
Combined with the notion that the schema could be con-
stantly changing as new information is learned from ad-
ditional image processing, a graph database is a logical
choice for representing visual metadata.

Image
Name: “”Size: <int>Date: <datetime>Type: jpg/png/..

Video
Name: “”Size: <int>Date: <datetime>Duration: <time>

Frame
Name: “”FrameId: <int>Size: <int>Date: <datetime>

Location
Name: “”Lat1: <double>Lat2: <double>Long1: <double>Long2: <double>

Object
Name: “”Color: <RGB>Type: <chair…>

Person
Name: “”Age: <int>DOB: <datetime>

ComposedOf

At
ContainsX1: <float>X2: <float>Y1: <float>

Y2: <float>

ContainsX1: <float>X2: <float>Y1: <float>
Y2: <float>

SubsetOf

Figure 2: Example visual metadata represented as a
property graph.

Many current graph database implementations are pro-
prietary solutions, such as Allegro-Graph [12], Infinite-
Graph [14], and Neo4j [6], with Titan [2] being the only
fully open source implementation. Unfortunately, many
of them have performance issues when supporting the
traditional notion of transactions at low latency; in or-
der to take advantage of the graph structure the database
should be in memory but also persistent. New persis-
tent memory technology [16, 21, 26] meets these needs;
we further discuss the benefits and application to a graph
database implementation in Section 3.

Image Formats Traditional lossy image formats such
as JPEG are designed to compress the data by discard-
ing high-frequency information that humans don’t gen-
erally notice. However, as the quantity of visual data
increases, more of it is processed before consumed by
humans; information that is meaningless to humans may
not be meaningless for analysis. Retaining all the infor-
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mation results in lossless image formats such as PNG,
but this comes at the cost of the compression rate.

Given these trends, we are exploring analysis friendly
image formats such as TileDB [24]. TileDB was orig-
inally designed as a scientific data management system
optimized for both dense and sparse arrays, a format
in which images and videos can be expressed. TileDB
is especially interesting because it allows efficient re-
trieval of specific areas of the array, making it possible
to only return the area of an image where an object ex-
ists. Compared to other data management systems such
as SciDB [5], TileDB performs orders of magnitude bet-
ter in both reading and writing, but currently has fewer
scientific capabilities.

Related Data Management Systems The Facebook
architecture for photos combines TAO [4], Haystack [3],
and f4 [22] for metadata, hot/recent data, and warm data
respectively. While the social aspect of Facebook is log-
ically suited to a graph, the bulk of their data is already
stored in MySQL [23], so they chose to develop a graph-
aware cache. A similar approach was taken by Grail [10],
which argued that a syntactic layer written on top of a re-
lational database could answer graph queries.

Diamond [13, 28] exploited active disks to perform
discard-based search in order to shrink the amount
of data returned to a reasonable size. We accom-
plish the same goal by exploiting persistent memory to
store a graph database for metadata. There are several
databases and data management systems that focus on
enabling analytics or combining transactional and ana-
lytic workloads over large scale data, such as SciDB [5],
BigTable [7], Shark [32], and Vertica [18]. While these
systems do not focus on visual processing as a primary
entity, they are valuable resources in distributing and an-
alyzing very large scale data.

3 Proposed Storage Architecture

We propose a storage architecture to efficiently identify
and retrieve relevant visual data, in order to enable analy-
sis. This architecture, outlined in Figure 3, implements a
graph database for visual metadata in order to efficiently
identify which data is relevant and a library that handles
processing on analysis friendly image formats in addition
to traditional formats. Segregating the metadata and data
allows us to map each to the most suitable hardware in a
heterogeneous system and provides the request server the
flexibility of identifying the most efficient way to handle
a request for data.

Metadata Storage While we could have implemented
a graph abstraction layer on top of a relational database,

Request Server

Metadata Database (PMGD)
Visual Compute Library (VCL)

Data Storage

Analysis friendly media format(s)
Raw media format(s)

Client API

Figure 3: Major Components

we wanted to have a highly efficient way of identifying
relevant data. A query such as “find all the photos of Bob
playing volleyball in Florida” would require two joins in
a relational database, while it would be a 2-hop neigh-
bor query in a graph database. Since we wanted a fast,
persistent graph database, we have chosen to extend our
previous work on a persistent memory graph database
(PMGD) to be a fully distributed graph database. We are
in the process of integrating PMGD with our architecture
as a multi-modal metadata storage.

For a graph database to persist the data on disk, cur-
rent implementations serialize the data to write to a block
sequential device. Unfortunately, this not only negates
the benefits of the graph structure but also causes per-
formance issues. To address these issues, PMGD takes
advantage of developments in persistent memory (PM)
technology [16, 21, 26]; specifically the low, predictable
access times and byte-addressable nature. The result is a
graph database that can effectively mix OLTP and OLAP
functionality, bypassing the data serialization step.

PMGD is designed to exploit a memory hierarchy with
data structures and transactional semantics that work
with the PM caching architecture; reduce write requests
(addressing PM’s lower write bandwidth compared to
DRAM); and reduce the number of flushes and memory
commits. Our implementation organizes data in PM with
the goal of achieving the best possible trade-off between
storage density (how much information is stored per unit
of storage) and speed of data retrieval 1.

1Full implementation and evaluation details of PMGD are beyond
the scope of this paper.
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Data Storage In order to reduce the data access time,
we have been looking at storing images in an analy-
sis friendly format, such as TileDB. The benefit of the
TileDB format is that images are stored as a lossless com-
pressed array of pixel values; when data is needed, it does
not need to be decoded from the image format. This im-
proves the speed at which data is retrieved and made us-
able; the trade-off being that the compression is not as
good as the original format.

We have developed the Visual Compute Library
(VCL), which interfaces with TileDB in order to store
and access images. The base functions allow a user to
convert images from traditional formats (such as JPEG
and PNG) into the TileDB format. We have extended the
VCL so that a user can interact with an image without
worrying about the format it is stored in, unless specifi-
cally indicated. We are exploiting the array data manage-
ment capabilities of TileDB to develop additional func-
tionality in the VCL. The intention is to allow a user to
do processing on the image directly, such as resizing or
obtaining a specific region of the image.

4 Evaluation

To evaluate our early architecture and corresponding as-
sumptions, we focus on understanding the individual
components of PMGD and VCL. We ran our experiments
on a Intel R© Xeon R© E5-4620 CPU (Ivy Bridge) server
and a Intel R© Xeon R© E5-2699 CPU (Haswell) server.
For image classification, we used the Intel version of
Caffe [19] that has been optimized using the Math Kernel
Library (MKL) [15], with a batch size of 5000 images.

4.1 Metadata Access

As previously discussed in Section 2, metadata consists
of the output of a neural network about the contents of
the visual data. In our experiments this is a set of confi-
dence values, one for each object the neural network can
detect (discarding objects with a confidence value lower
than 0.1). A typical approach used when looking for a
specific set of images (such as photos of your dog) is to
store confidence values in a NumPy matrix, or for more
complex queries in a relational database. As our base-
line for comparison, the metadata was stored in either
an in-memory NumPy [31] matrix or in a MemSQL in-
memory row-store.

We constructed two tests for the metadata access: a
timing test of a 2-hop neighbor query (“find all the im-
ages that contain cars on beaches”) and the time of a sim-
ple query (“find all images that contain beaches”) as the
total number of images increased. Images were taken
from the YFCC100M dataset [30].

Setup For emulating and evaluating PM, we use the
Intel R© Persistent Memory Emulation Platform (PMEP)
that has been used in other persistent memory re-
search [9, 8, 33]. PMEP is configured with an average
predicted latency of 300ns to emulated PM; compared to
the average latency of 90ns to local DRAM memory.

Our base comparison for relational databases is Mem-
SQL [20], which provides high throughput and features
an in-memory row store and an on-disk column store.
We chose to use MemSQL because it does not require
the use of a buffer pool (such as MySQL [23]) which can
cause contention, and because the combination of code
generation and lock-free data structures cause MemSQL
to perform very fast in memory. Additionally, Mem-
SQL is designed to be an in memory database, similar
to PMGD (though the targeted memory is PM in the case
of PMGD). We intend to scale out PMGD, and MemSQL
is fully distributed, making it possible to continue to do
direct comparisons.
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Figure 4: Total time to query metadata to find the de-
sired set of images (cars on beaches). PMGD outper-
forms other solutions, even at the PM latency.

Query Time Figure 4 shows the total metadata query
time, calculated as the amount of time it took to return a
set of images satisfying the first part of the query (“find
all images of beaches”) and the amount of time it took
to return a set of images satisfying the second part of
the query (“of the beach images, find all images with
cars”). The total query time with PMGD is 37.5x faster
than keeping a NumPy matrix in memory. Due to the
relatively small size of the query output, the additional
persistent memory latency (pmgd pm) does not affect
PMGD numbers significantly.

We also compared PMGD with storing the metadata in
a MemSQL database. Once we indicate which database
to load, MemSQL always has data in local DRAM. In or-
der to give MemSQL the best chance, we show the query
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times during the execution of the experiment (implying
no query caching, seen in Figure 4 as memsql start) and
when the query was run multiple times (memsql opt).
While the optimal MemSQL performance is significantly
better than the Python matrix queries (8x), PMGD per-
forms better even at the PM latency. This supports
our hypothesis that a graph database is better suited for
queries over visual data; more thorough evaluations are
on-going work.

Query Time at Scale Figure 5 depicts how the perfor-
mance of a simple query (“find all images of beaches”)
scales when the number of elements in the database
increases. In the figure, python matrix, memsql, and
pmgd dram were all executed at the DRAM latency with
databases for MemSQL and PMGD persisted on a SSD.
Pmgd pm was executed at the PM latency.
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Figure 5: Effect of scaling the dataset size on the meta-
data query. Note the Y-axis is log-scale. PMGD out-
performs other solutions, though could benefit from op-
timizations at larger scale.

As the number of elements grows, the metadata query
time also increases for both the Python matrix and
PMGD. However, the Python matrix suffers a much
higher latency even though it is a simple query. The ex-
pected PM latency affects PMGD more and more as the
data size increases but is still almost three times faster
than the Python matrix in DRAM. Even reading data
at the PM latency, PMGD is always better than Mem-
SQL, though the differences start diminishing at higher
data scales. Since we haven’t done special optimizations
for query caching or execution in our library, we aim to
maintain the performance gap with MemSQL as we ap-
ply more optimizations at even larger scale.

Table 1: Time to read and resize various size and for-
mat images averaged over 400 images. As image size
increases, so does the benefit of using the TDB format
and the VCL.

Image Size Image Format Resize Method Time (ms)
500x291 JPEG OpenCV 2.85
500x291 TDB OpenCV 0.37
500x291 TDB VCL 1.36

1024x2048 PNG OpenCV 68.04
1024x2048 TDB OpenCV 4.63
1024x2048 TDB VCL 2.89

4.2 Data Access

Since data access is becoming an issue with newer hard-
ware and software (Figure 1), we are in the process of
developing the Visual Compute Library (VCL), which
interfaces with TileDB in order to provide fast access to
images and regions of interest within an image. Since the
image information in TileDB is stored as an array, VCL
also introduces computation directly on the array.

Preliminary experiments tested reading the image
from the original format (JPEG, PNG, or TileDB (TDB))
into OpenCV and using the OpenCV resize function, as
well as reading a TDB image into the VCL and using
the VCL resize function. Both large and small images
benefit from being stored in TDB format, as seen in Ta-
ble 1, and using the VCL to resize sees a 23.5x improve-
ment for large images. The reason it is faster to resize the
smaller TDB image using OpenCV is because the VCL
resize function has not been optimized yet. This speedup
comes at the cost of an increased size on disk when stor-
ing an image in the TDB format. Determining how to
decrease the size on disk while maintaining the fast ac-
cess time is on-going work.

5 Conclusions

Initial experiments with our architecture have shown the
importance of developing storage solutions with visual
data as a primary element. We have presented our archi-
tecture design, which seamlessly integrates cutting-edge
hardware with novel software. It is our goal to spark
thought and discussion about this problem in the storage
community, and we hope that this paper provides a start-
ing point for discussion and exploration in visual data
storage.
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