
SONIC: Application-aware Data Passing for
Chained Serverless Applications

Ashraf Mahgoub1, Karthick Shankar2, Subrata Mitra3, Ana Klimovic4,
Somali Chaterji1, Saurabh Bagchi1

1: Purdue University; 2: Carnegie Mellon University; 3: Adobe Research; 4: ETH Zurich

1

Background: Serverless Computing
DAG & Data Passing

• FaaS are becoming increasingly popular for complex workflows: Video
Analytics, ML pipelines, Genomics

• Cloud provider performs administrative tasks (Scaling, Scheduling,
Maintenance)

• Applications are represented as a series of stateless functions that pass
data among themselves (a DAG)

• Since function’s placement is hidden from users, direct communication
between the functions is infeasible
– Direct communication also requires both sending and receiving functions to

execute simultaneously, FaaS frameworks usually provide no such guarantees

• State-of-practice: Use a remote storage (e.g., AWS S3)

VM1

VM2

λ𝟏

λ"

FileAWS
S3

2

Workflow Example: Video Analytics DAG

Consisting of 3 stages:

1. Split-Video: Takes a video clip as an input
(loaded from S3/Blob Storage), and
generates smaller video chunks of the same
length (10 sec)

2. Extract-Frame: Takes a video chunk as input
and extracts a representative frame from
that chunk

3. Classify-Frame: Performs object classification
for extracted frame and writes the
classification results to Storage

Start

Long-Term Storage (S3/Blob)

Extract
Frame
(λ𝟐,𝟏)

Extract
Frame
(λ𝟐,𝑵)

Classify
Frame
(λ𝟑,𝟏)

Classify
Frame
(λ𝟑,𝑵)

…....

…....

Long-Term Storage (S3/Blob)

Extract
Frame
(λ𝟐,𝟐)

Classify
Frame
(λ𝟑,𝟐)

Split_Video (λ𝟏𝟏)

End
3

Any application DAG can be represented as
a state machine in AWS Step Function

VM-1 VM-2
• The state-of-practice technique to communicate between λ′s is to use a Remote Storage (e.g., S3)

– Step Functions supports passing direct JSON payloads of very small sizes (≤ 256KB)

• Pros:
– Allows for flexible scheduling: Poses no limitation on where the λ′s execute

• Cons:
– Increased latency: Data needs to be transferred over the network twice, to and from the remote storage

Serverless Data-Passing Challenges

λ𝟏 λ"
File

Remote Storage (S3)

File

4

SONIC’s Data-Passing Alternatives

Local StorageLocal StorageLocal Storage

VM-1

λ𝟏 λ𝟐

File

Direct-passing
VM-1

File

VM-2

File

VM-passing

λ𝟏 λ𝟐

Forces λ𝟐 to run on the same VM
as λ"
Ø Infeasible if λ𝟐 cannot fit in

VM-1

Ø Also infeasible if λ𝟐 waits for
data from a third lambda λ#
(i.e.,	Fan-in)

Copies the local state after λ" executes to
VM-2 before executing λ$
Ø Data-passing speed depends on VM-1

and VM-2 bandwidths

Ø If there exists more than one instance
of λ𝟐(i.e., Fanout), VM-1’s network
bandwidth becomes the bottleneck

Remote-passing

VM-1

File

VM-2

File

Remote Storage (S3)

λ𝟐λ𝟏

5

Data transfer over
the network

Data is
written/read from

local storage

Data-passing performance trade-off

Fanout =
1,3, and 12

6

Direct-Passing vs Remote Storage
Ø With higher network bandwidth, the crossover point between Direct-

passing and Remote-passing shifts to higher fanout values

7

OUR SOLUTION: SONIC
Hybrid Data-Passing Approach

• SONIC jointly optimizes the lambda placement for every function, and data-
passing method for every edge in the DAG

• First, we profile the DAG and monitor the following metrics:
– Memory footprint for every function
– Execution time for every function
– Input/output file size for every function
– Fanout degree in every stage

• These parameters vary w.r.t. the DAG’s input size
– For example, analyzing a 1 min video vs. 30 min video

• We use these parameters to identify the best data-passing method and the
corresponding lambda placement for each pair of dependent stages in the DAG

8

SONIC’S API: Data-passing Abstraction

1. SONIC abstracts the selection of data passing methods from application developers

2. Functions write intermediate data to files using a standard file API(read and write),
like writing to local storage

3. All λs within a job share a file namespace

4. If an application DAG has an edge λ, → λ- , SONIC ensures that all of λ- ’s input files
are present in its local storage before it starts execution.

5. Therefore, λ!reads its input files from the same path as the one that λ,wrote the
files to.

9

Greedy Data-Passing Decisions: Pitfalls
Start

End

Long-Term Storage (S3/Blob)

Split_Video (λ𝟏𝟏)

Extract
Frame
(λ𝟐𝟏)

Extract
Frame
(λ𝟐𝑵)

Classify
Frame
(λ𝟑𝟏)

Classify
Frame
(λ𝟑𝑵)

…....

…....

Long-Term Storage (S3/Blob)

Extract
Frame
(λ𝟐𝟐)

Classify
Frame
(λ𝟑𝟐)

VM-Passing
(locality)

1. If we select “VM-Passing” between Split
and Extract, all the extracted frames will
reside on the same VM

2. This will cause passing between Extract
and Classify to be either:

1. VM-Passing: sacrifices parallelism as we
cannot fit all Classify invocations in the
same VM

2. Direct or Remote: Bounded by the single
VM’s bandwidth and slow

3. Alternatively, we could have selected a
non-optimal decision between Split and
Extract to minimize the end-to-end latency

4. Specifically, using Direct-passing spreads
the extracted frames on several VMs,
allowing VM-passing to Classify without
sacrificing parallelism

10

…....

SONIC: Design Overview

11

Evaluation: Baselines

• OpenLambda [HotCloud’16] + S3: OpenLambda framework deployed on EC2 with S3
as its remote storage. A new VM is created to host each λ in the DAG.

• OpenLambda [HotCloud’16] + Pocket [OSDI’18]: We use Pocket’s default storage tier
(DRAM) with r5.large instance types.

• SAND [ATC’18]: Leverages data locality by allocating all lambda functions on a single
host with rich resources.

• AWS-λ: The commercial FaaS platform using two different remote storage systems: S3
and ElastiCache-Redis.

• Oracle-SONIC: This is SONIC with fully accurate estimation of DAG parameters and no
data-passing latency (mimicking local running of all functions).

12

Evaluation: E2E Latency and Cost

0
5
10
15
20
25
30
35
40

0

40

80

120

160

Sonic AWS-ƛ +
S3

AWS-ƛ +
EL-Redis

SAND Open-ƛ +
S3

Open-ƛ +
Pocket

Oracle
Sonic

Ti
m

e
(s

ec
)

Pe
rf

/$

Perf/$ E2E_Run_Time

+1.8X

+34%

-19%

+4.4X

+59%

12.9X

Perf/$ represents the latency normalized by Cost (in $) (𝟏
𝑳𝒂𝒕𝒆𝒏𝒄𝒚

. 𝟏
𝑪𝒐𝒔𝒕

)
13

Content Sensitivity
• Our approach uses the job’s input size only to predict the DAG

execution parameters.

• This allows generalizing without performing any application-specific
processing.

• In some applications, the execution parameters are also dependent
on the input content.
– For example, the intermediate chunk sizes (in MB) in our video analytics

application will vary based on the video’s bitrate (video quality).

• We want to evaluate how sensitive is SONIC to this content sensitivity
– For example, what is the performance of SONIC executing with test videos

different from training?

14

Content Sensitivity (Cont.)
• First, we collect 60 YouTube videos from each of the following

categories (News, Entertainment, Nature, Sports, and Cartoon)

• We compare SAND and OpenLambda+S3 to the following variants
of SONIC:
– Same Category: Test videos are from the same category as the

training videos (Sports)
– All Categories: Training videos are sampled from all categories,

including the testing video category
– Unseen Category: All training videos are from News category

(has a 25% lower bitrate than the Sports category on average)
– Zero Error: our approach executing with perfect knowledge of

the exact execution parameters

15

Evaluation: Content Sensitivity

Perf/$ represents the Cost-normalized latency (𝟏
𝑳𝒂𝒕𝒆𝒏𝒄𝒚

. 𝟏
𝑪𝒐𝒔𝒕

)
16

0
5
10
15
20
25
30
35

0

20

40

60

80

100

Sonic
Same

Category

Sonic
All

Sonic
Unseen

Category

Open-ƛ
+ S3

SAND Sonic
Zero
Error

Ti
m

e
(s

ec
)

Pe
rf

/$

Perf/$ E2E_Run_Time(sec)-8% -11%

+206%

+61%
+19%

Evaluation: Scalability

17

Conclusion

1. Data passing among serverless functions in an application is challenging
2. We studied 3 different data-passing options between serverless functions

and showed that no single method prevails under all conditions (input sizes,
network bandwidth, etc.)

3. We present SONIC a dynamic and hybrid approach to select the best global
data passing method and lambda placement serverless workflows

4. Our solution outperforms all baselines in terms of Cost-normalized latency
without sacrificing the raw latency

18

Ongoing Work
1. How to handle content-dependence in application DAGs
2. How to handle dynamic control flows

19

Funding:
• NIH R01 (2016-2022)
• NSF (CNS): Collaborative Research: Computer System Failure

Data Repository to Enable Data-Driven Dependability
• NSF (CNS)/NIFA: Secure CPS for Real-time Agro-Analytics

Thank You!

