

SONIC: Application-aware Data Passing for Chained Serverless Applications

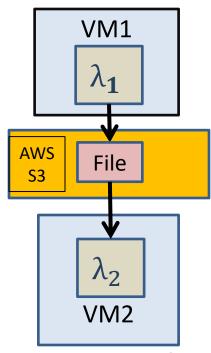
Ashraf Mahgoub¹, Karthick Shankar², Subrata Mitra³, Ana Klimovic⁴, Somali Chaterji¹, Saurabh Bagchi¹

1: Purdue University; 2: Carnegie Mellon University; 3: Adobe Research; 4: ETH Zurich

Background: Serverless Computing DAG & Data Passing

λ

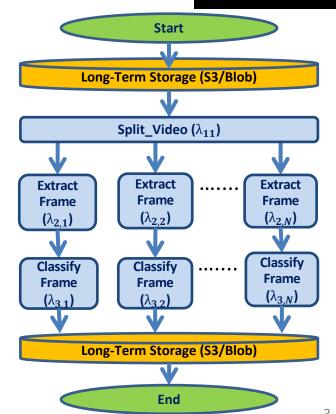
- FaaS are becoming increasingly popular for complex workflows: Video Analytics, ML pipelines, Genomics
- Cloud provider performs administrative tasks (Scaling, Scheduling, Maintenance)
- Applications are represented as a series of stateless functions that pass data among themselves (a DAG)
- Since function's placement is hidden from users, *direct communication* between the functions is infeasible
 - Direct communication also requires both sending and receiving functions to execute simultaneously, FaaS frameworks usually provide no such guarantees
- State-of-practice: Use a remote storage (e.g., AWS S3)



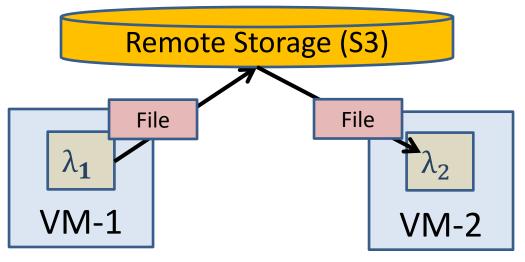
Workflow Example: Video Analytics DAG

Any application DAG can be represented as a **state machine** in AWS Step Function

- *Split-Video:* Takes a video clip as an input (loaded from S3/Blob Storage), and generates smaller video chunks of the same length (10 sec)
- Extract-Frame: Takes a video chunk as input and extracts a representative frame from that chunk
- *Classify-Frame:* Performs object classification for extracted frame and writes the classification results to Storage

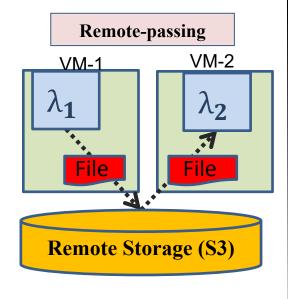


Serverless Data-Passing Challenges



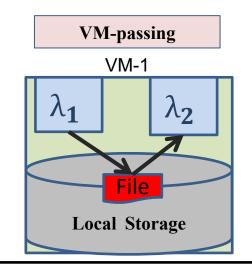
- The state-of-practice technique to communicate between λ' s is to use a Remote Storage (e.g., S3)
 - Step Functions supports passing direct JSON payloads of very small sizes (≤ 256KB)
- Pros:
 - Allows for flexible scheduling: Poses no limitation on where the λ' s execute
- Cons:
 - Increased latency: Data needs to be transferred over the network twice, to and from the remote storage

SONIC's Data-Passing Alternatives



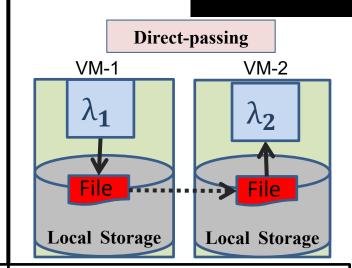
Data transfer over
the network

Data is
written/read from
local storage



Forces λ_2 to run on the same VM as λ_1

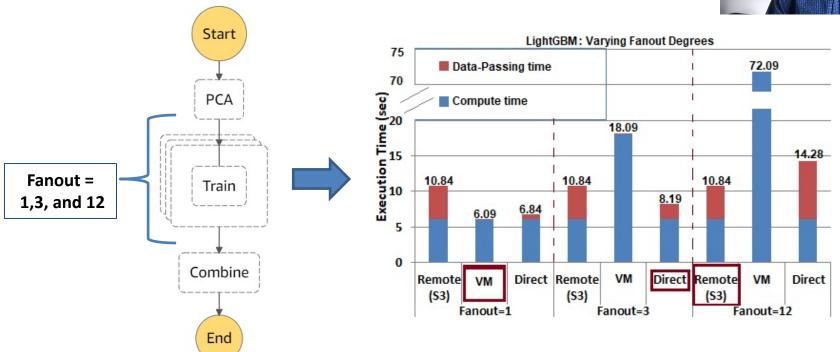
- Infeasible if λ_2 cannot fit in VM-1
- Also infeasible if λ_2 waits for data from a third lambda λ_3 (i.e., Fan-in)



Copies the local state after λ_1 executes to **VM-2** before executing λ_2

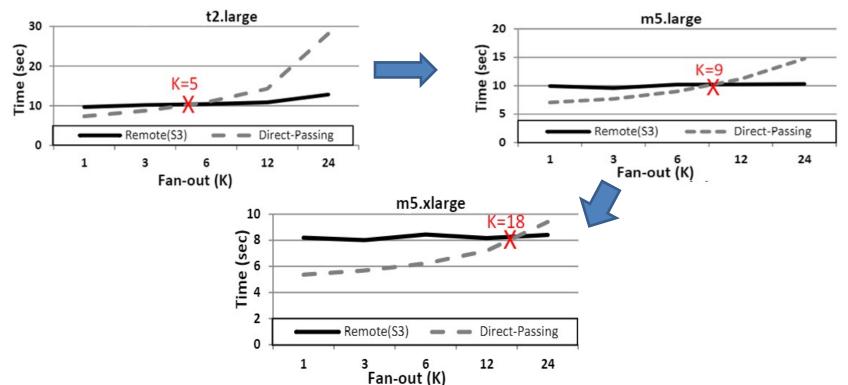
- Data-passing speed depends on VM-1 and VM-2 bandwidths
- If there exists more than one instance of λ_2 (i.e., Fanout), **VM-1**'s network bandwidth becomes the bottleneck 5

Data-passing performance trade-off



Direct-Passing vs Remote Storage

With higher network bandwidth, the crossover point between Directpassing and Remote-passing shifts to higher fanout values



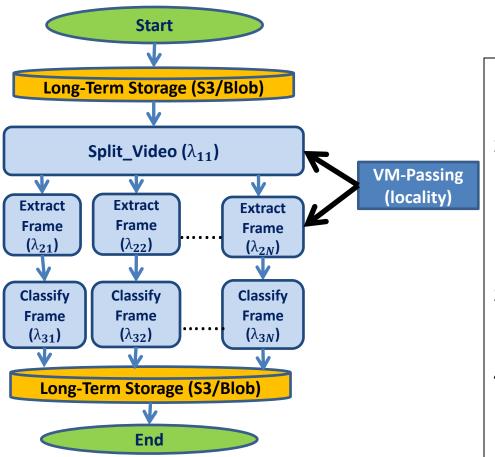
OUR SOLUTION: SONICHybrid Data-Passing Approach

- Sovic jointly optimizes the lambda placement for every function, and datapassing method for every edge in the DAG
- First, we profile the DAG and monitor the following metrics:
 - Memory footprint for every function
 - Execution time for every function
 - Input/output file size for every function
 - Fanout degree in every stage
- These parameters vary w.r.t. the DAG's input size
 - For example, analyzing a 1 min video vs. 30 min video
- We use these parameters to identify the best data-passing method and the corresponding lambda placement for each pair of dependent stages in the DAG

SONIC'S API: Data-passing Abstraction

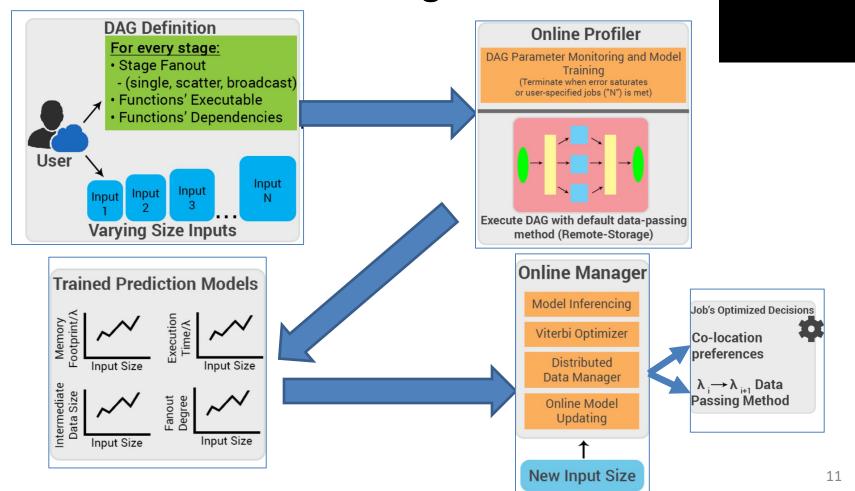
- **1. SONIC** abstracts the selection of data passing methods from application developers
- 2. Functions write intermediate data to files using a standard file API(read and write), like writing to local storage
- 3. All λ s within a job share a file namespace
- 4. If an application DAG has an edge $\lambda_s \to \lambda_r$, SONIC ensures that all of λ_r 's input files are present in its local storage before it starts execution.
- 5. Therefore, λ_r reads its input files from the same path as the one that λ_s wrote the files to.

Greedy Data-Passing Decisions: Pitfalls



- 1. If we select "VM-Passing" between Split and Extract, all the extracted frames will reside on the same VM
- 2. This will cause passing between Extract and Classify to be either:
 - VM-Passing: sacrifices parallelism as we cannot fit all Classify invocations in the same VM
 - Direct or Remote: Bounded by the single VM's bandwidth and slow
- 3. Alternatively, we could have selected a non-optimal decision between Split and Extract to minimize the end-to-end latency
- 4. Specifically, using Direct-passing spreads the extracted frames on several VMs, allowing VM-passing to Classify without sacrificing parallelism

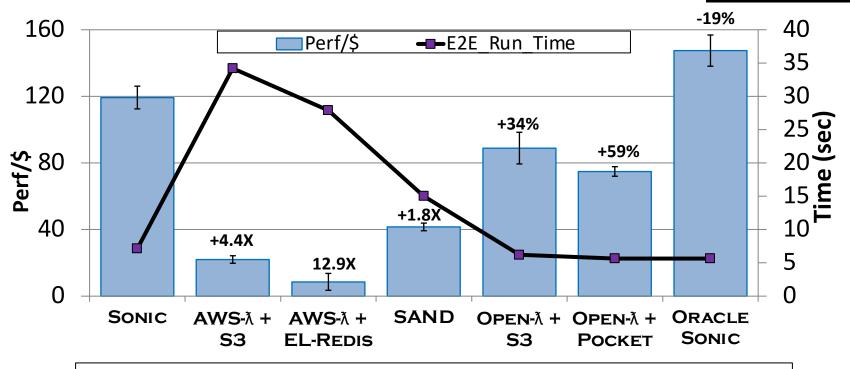
SONIC: Design Overview



Evaluation: Baselines

- OpenLambda [HotCloud'16] + S3: OpenLambda framework deployed on EC2 with S3 as its remote storage. A new VM is created to host each λ in the DAG.
- OpenLambda [HotCloud'16] + Pocket [OSDI'18]: We use Pocket's default storage tier (DRAM) with r5.large instance types.
- SAND [ATC'18]: Leverages data locality by allocating all lambda functions on a single host with rich resources.
- AWS-λ: The commercial FaaS platform using two different remote storage systems: S3 and ElastiCache-Redis.
- Oracle-SONIC: This is SONIC with fully accurate estimation of DAG parameters and no data-passing latency (mimicking local running of all functions).

Evaluation: E2E Latency and Cost



Perf/\$ represents the latency normalized by Cost (in \$) $(\frac{1}{Latency} \cdot \frac{1}{Cost})$

Content Sensitivity

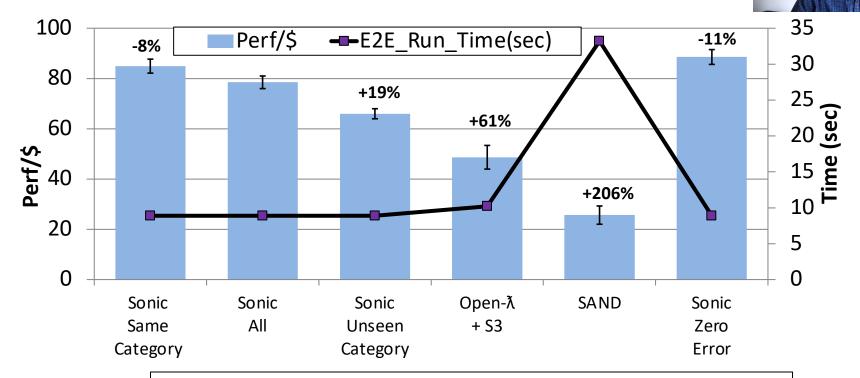
 Our approach uses the job's input size only to predict the DAG execution parameters.

- This allows generalizing without performing any application-specific processing.
- In some applications, the execution parameters are also dependent on the input *content*.
 - For example, the intermediate chunk sizes (in MB) in our video analytics application will vary based on the video's bitrate (video quality).
- We want to evaluate how sensitive is **SONIC** to this content sensitivity
 - For example, what is the performance of **SONIC** executing with test videos different from training?

Content Sensitivity (Cont.)

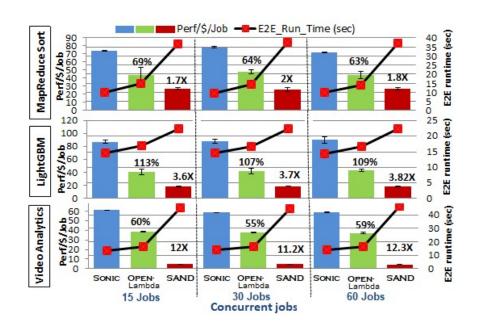
- First, we collect 60 YouTube videos from each of the following categories (News, Entertainment, Nature, Sports, and Cartoon)
- We compare SAND and OpenLambda+S3 to the following variants of Sovic:
 - Same Category: Test videos are from the same category as the training videos (Sports)
 - All Categories: Training videos are sampled from all categories, including the testing video category
 - Unseen Category: All training videos are from News category (has a 25% lower bitrate than the Sports category on average)
 - Zero Error: our approach executing with perfect knowledge of the exact execution parameters

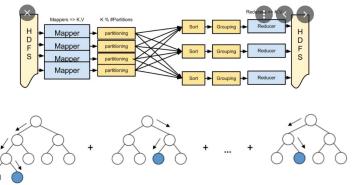
Evaluation: Content Sensitivity



Perf/\$ represents the Cost-normalized latency $(\frac{1}{Latency} \cdot \frac{1}{Cost})$

Evaluation: Scalability





Conclusion

- 1. Data passing among serverless functions in an application is challenging
- 2. We studied 3 different data-passing options between serverless functions and showed that no single method prevails under all conditions (input sizes, network bandwidth, etc.)
- 3. We present **SONIC** a dynamic and hybrid approach to select the best global data passing method and lambda placement serverless workflows
- 4. Our solution outperforms all baselines in terms of Cost-normalized latency without sacrificing the raw latency

Ongoing Work

- 1. How to handle content-dependence in application DAGs
- How to handle dynamic control flows

Thank You!

Funding:

- NIH R01 (2016-2022)
- NSF (CNS): Collaborative Research: Computer System Failure Data Repository to Enable Data-Driven Dependability
- NSF (CNS)/NIFA: Secure CPS for Real-time Agro-Analytics

