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Background: Serverless Computing
DAG & Data Passing

FaaS are becoming increasingly popular for complex workflows: Video
Analytics, ML pipelines, Genomics

Cloud provider performs administrative tasks (Scaling, Scheduling,
Maintenance)

Applications are represented as a series of stateless functions that pass
data among themselves (a DAG)

Since function’s placement is hidden from users, direct communication
between the functions is infeasible

— Direct communication also requires both sending and receiving functions to
execute simultaneously, FaaS frameworks usually provide no such guarantees

State-of-practice: Use a remote storage (e.g., AWS S3)
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Workflow Example: Video Analytics DAG

Any application DAG can be represented as
a state machine in AWS Step Function

1. Split-Video: Takes a video clip as an input
(loaded from S3/Blob Storage), and
generates smaller video chunks of the same
length (10 sec)

2. Extract-Frame: Takes a video chunk as input
and extracts a representative frame from
that chunk

3. Classify-Frame: Performs object classification
for extracted frame and writes the
classification results to Storage
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Serverless Data-Passing Challenges
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* The state-of-practice technique to communicate between A’s is to use a Remote Storage (e.g., S3)

— Step Functions supports passing direct JSON payloads of very small sizes (< 256KB)

*  Pros:
— Allows for flexible scheduling: Poses no limitation on where the A's execute
* Cons:
— Increased latency: Data needs to be transferred over the network twice, to and from the remote storage



SONIC’s Data-Passing Alternatives

Remote-passing VM-passing Direct-passing
\/M-1 VM-2 VM-1 VM-1 VM-2

A Ay A Ay A

_ i
0_

— Local Storage Local Storage Local Storage
Remote Storage (S3) \ e — — /g ¥4g
B Forces A, to run on the same VM Copies the local state after A, executes to
as Ay VM-2 before executing A,
Data transfer over » Infeasible if A, cannot fitin » Data-passing speed depends on VM-1
e IENSIVOTK > VM-1 and VM-2 bandwidths
writte?mj:(:csj from » Also infeasible‘if A, waits for > |If ther-e exists more than one instance
local storage d.ata from a third lambda A, of A, (i.e., Fanout), VM-1’s network
= > (i.e., Fan-in) bandwidth becomes the bottleneck 5




Fanout =
1,3,and 12

4

LightGBM: Varying Fanout Degrees
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Direct-Passing vs Remote Storage

» With higher network bandwidth, the crossover point between Direct-

passing and Remote-passing shifts to higher fanout values
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OUR SOLUTION: SONIC
Hybrid Data-Passing Approach

Sonic jointly optimizes the lambda placement for every function, and data-
passing method for every edge in the DAG
First, we profile the DAG and monitor the following metrics:

— Memory footprint for every function

— Execution time for every function

— Input/output file size for every function

— Fanout degree in every stage
These parameters vary w.r.t. the DAG’s input size
— For example, analyzing a 1 min video vs. 30 min video

We use these parameters to identify the best data-passing method and the

corresponding lambda placement for each pair of dependent stages in the DAG
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Sonic’s API: Data-passing Abstraction

SONIC abstracts the selection of data passing methods from application developers

Functions write intermediate data to files using a standard file API(read and write),
like writing to local storage

All As within a job share a file namespace

If an application DAG has an edge A, — A,., SONIC ensures that all of A,’s input files
are present in its local storage before it starts execution.

Therefore, A, reads its input files from the same path as the one that A wrote the
files to.



Greedy Data-Passing Decisions: Pitfalls
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Sonic: Design Overview
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Evaluation: Baselines

OpenLambda [HotCloud’16] + S3: OpenLambda framework deployed on EC2 with S3
as its remote storage. A new VM is created to host each A in the DAG.

OpenlLambda [HotCloud’16] + Pocket [OSDI’18]: We use Pocket’s default storage tier
(DRAM) with r5.large instance types.

SAND [ATC’18]: Leverages data locality by allocating all lambda functions on a single
host with rich resources.

AWS-A: The commercial FaaS platform using two different remote storage systems: S3
and ElastiCache-Redis.

Oracle-SONIC: This is SONIC with fully accurate estimation of DAG parameters and no
data-passing latency (mimicking local running of all functions).



Evaluation: E2E Latency and Cost
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Content Sensitivity

Our approach uses the job’s input size only to predict the DAG
execution parameters.

L

This allows generalizing without performing any application-specific
processing.

In some applications, the execution parameters are also dependent
on the input content.

— For example, the intermediate chunk sizes (in MB) in our video analytics
application will vary based on the video’s bitrate (video quality).

We want to evaluate how sensitive is Sowic to this content sensitivity

— For example, what is the performance of Sonic executing with test videos
different from training?
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Content Sensitivity (Cont.)

First, we collect 60 YouTube videos from each of the following
categories (News, Entertainment, Nature, Sports, and Cartoon)

We compare SAND and OpenLambda+S3 to the following variants
of Sowic:

— Same Category: Test videos are from the same category as the
training videos (Sports)

— All Categories: Training videos are sampled from all categories,
including the testing video category

— Unseen Category: All training videos are from News category
(has a 25% lower bitrate than the Sports category on average)

— Zero Error: our approach executing with perfect knowledge of
the exact execution parameters
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Evaluation: Content Sensitivity
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Evaluation: Scalability
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Conclusion

Data passing among serverless functions in an application is challenging

We studied 3 different data-passing options between serverless functions
and showed that no single method prevails under all conditions (input sizes,
network bandwidth, etc.)

We present SONIC a dynamic and hybrid approach to select the best global
data passing method and lambda placement serverless workflows

Our solution outperforms all baselines in terms of Cost-normalized latency
without sacrificing the raw latency

Ongoing Work
How to handle content-dependence in application DAGs
How to handle dynamic control flows
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