
Early detection of configuration errors
to reduce failure damage

Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou,

Shan Lu, Long Jin, Shankar Pasupathy

UC San Diego University of Chicago NetApp

done

This paper is not about bugs
about configuration errors.

done

• bad values inside configuration files

• introduced by sysadmins

• nothing “wrong” in our code

2

When systems use bad configuration
values, the code does report errors.

• throw exceptions

• return error code

• crash with coredumps

3

correct != timely

/* sys_24-7.c */

signal(SIGSEGV, call_techsup);

static void call_techsup(int sig) {
if (fork() == 0) {
char* args[] = {“0911”, “SOS”};
int rv = execvp(dial_prog_path, args);
if (rv != 0)
fprintf(stderr, “I’m sorry (%d)!”, errno);

}
}

Errors are often reported too late!

configuration“/bad/dial/path”

4

4

/* sys_24-7.c */

signal(SIGSEGV, call_techsup);

static void call_techsup(int sig) {
if (fork() == 0) {
char* args[] = {“0911”, “SOS”};
int rv = execvp(dial_prog_path, args);
if (rv != 0)
fprintf(stderr, “I’m sorry (%d)!”, errno);

}
}

Errors are often reported too late!

configuration“/bad/dial/path”

Shoot!
Well, this is unexpected…

Error code: 500

An error has occurred and we’re working

to fix the problem!

The service will be up and running shortly.

“It’s too late to apologize!”

rollout

Systems execution has stages.

initialization

observation period

Time

workload

production

error

Server

days/weeks

Server Server Server Server Server
Server

Server Server Server Server Server Server

Server

Server

…

…

5

initialization rollout workload error

d
am

ag
e

 o
f

co
n

fi
g

e
rr

o
rs

Chart Title

All stages are not created equal.

fix

revenue loss

observation period production

Server

Fault
tolerance

service
outage

6

Misconfigured backup DNS (used upon attacks)
made LinkedIn inaccessible for half a day.

Faulty failover configurations turned a 10
minute outage into a 2.5 hour ordeal.

Misconfigured data protection allowed a bug
to wipe out 10% of the storage nodes.

Does this truly happen?

7

Sysadmins’ wish

All the configuration

errors can be exposed

at initialization.

initialization rollout workload error

observation period production

Difficult for sysadmins

to test out latent

configuration errors 

8

Reality

Contribution

• A perspective of checking configurations early and
detect errors timely

• A study on real-world configuration checking practices
 deficiency of built-in configuration checks
 prevalent threats of latent configuration errors

• PCheck: tooling support for automatically generating
configuration checking code
 help systems detect configuration errors early
 effective, safe, and efficient

9

How well terribly do systems check
their configurations?

• Studied configuration parameters of R.A.S.
(Reliability, Availability, Serviceability) features

Software RAS Param.

HDFS 44

YARN 35

HBase 25

Apache 14

Squid 21

MySQL 43

 mission critical

 not really needed for
initialization

─ 12%─39% are not used
during initialization

10

w/o early checking,

errors would become

latent & catastrophic.

How well terribly do systems check
their configurations?

• 14%─93% of the studied parameters do not have
any special checking code at initialization

→ rely on usage code for checking/reporting errors

5%─39% of R.A.S. parameters are
subject to latent errors.

11

Detecting latent configuration errors
would require separate checking code
at systems’ initialization phase.

12

Systems already have checking logic
implied by the usage of configuration
values (though usage code often comes late).

Can we leverage usage-implied checking
to detect configuration errors early?

13

Why not copy+paste the code that uses
configuration values into initialization?

use(cfg1)

use(cfg2)

initialization rollout workload error

observation period production 14

use(cfg1)

use(cfg2)

use(cfg1)

use(cfg2)

Why not copy+paste the code that uses
configuration values into initialization?

use(cfg1)

use(cfg2)

initialization rollout workload error

observation period production 14

/* sys_24-7.c */

signal(SIGSEGV, call_techsup);

static void call_techsup(int sig) {
if (fork() == 0) {
char* args[] = {“0911”, “SOS”};
int rv = execvp(dial_prog_path, args);
if (rv != 0)
fprintf(stderr, “I’m sorry (%d)!”, errno);

}
}

configuration

Demo

15

/* sys_24-7.c */

signal(SIGSEGV, call_techsup);

static void call_techsup(int sig) {
if (fork() == 0) {
char* args[] = {“0911”, “SOS”};
int rv = execvp(dial_prog_path, args);
if (rv != 0)
fprintf(stderr, “I’m sorry (%d)!”, errno);

}
}

Demo

int rv = execvp(dial_prog_path, args);

configuration

15

Copy

/* sys_24-7.c */

static int sys_init() {
load_config();
...
...
...

}

Demo

int rv = execvp(dial_prog_path, args);

15

Paste

Problem 1 Executing code needs context
 args is undefined

Problem 2 Execution can have side effects
 prank calls are crimes.

 exec() removes the current process image

Copy+paste code does not work!

int rv = execvp(diag_prog_path, args);

16

 args is undefined

 best effort: may not always be able to determine the values

 configurations often have relatively simple context

int rv = execvp(diag_prog_path, args);

 Backtrack to determine values of undefined variables

+ char* args[] = {“0911”, “SOS”};

Produce necessary context

17

 “Sandbox” the checking code

int rv = execvp(diag_prog_path, args);

char* args[] = {“0911”, “SOS”};

- int rv = execvp(diag_prog_path, args);

- char* args[] = {“0911”, “SOS”};

+ int rv = check_execvp(diag_prog_path);

Prevent side effects

 Rewrite instructions based on check utilities that validate the
operands w/o executing the instructions

18

int rv = check_execvp(diag_prog_path);

PCheck implementation

• Works for both C and Java programs
 LLVM compiler framework for C code

 Soot compiler framework for Java code

19

PCheck implementation

1. Extract instructions that use
configuration values

2. Produce necessary context

3. Prevent side effects

4. Capture runtime anomalies

19

prog

conf

APIs

Input Output

checker

checker

checker

…

prog

5. Insert + invoke checking code
in program bitcode/bytecode

Analysis

invok. loc.

Evaluation

• Evaluate on 58 real-world latent configuration errors
 37 new errors (discovered in our study)

 21 historical errors (caused failures in the past)

20

done

How many errors can be detected?

0

5

10

15

20

25

30

35

40

1 2

Chart Title

71.4%

78.4%

Historical errors New errors

#

l
a
t
e
n
t

c
o
n
f
i
g

e
r
r
o
r
s

missed

detected

21

done

How many errors can be detected?

21

Type of errors
(%) errors detected

Historical New

Type/format errors 1/1 (100.0%) 13/13 (100.0%)

Invalid options/ranges 2/2 (100.0%) 4/4 (100.0%)

Incorrect files/dirs 9/12 (75.0%) 5/7 (71.4%)

Miscellaneous errors 3/6 (50.0%) 7/13 (53.8%)

Total 15/21 (71.4%) 29/37 (78.4%)

done

What errors are missed?

• Cannot generate the checking code
 fail to produce the execution context

 e.g., values from runtime requests

• Cannot safely execute the checking code
 unknown side effects

 e.g., used as bash command

22

done

Caveats

• Errors manifested via a long running period
(we cannot run checks for too long.)
 resource misconfigurations (exhaustion)

 performance misconfigurations (degradation)

• Errors not exposed via “obvious” anomalies
(we report errors based on exceptions, error code, etc.)
 semantic errors (e.g., backup data to wrong files)

23

• Checking overhead

HDFS/YARN/HBase less than 1000 msec

Apache/MySQL/Squid less than 100 msec

• False positives
 tested with the default values and real-world settings

collected from 830 configuration files

 only 3 parameters have false alarms reported
- caused by imprecise analysis that missed control-flow
dependencies (the exposed anomalies are unreal)

done

What is the cost?

24

Check your configurations early!

• Treat configuration errors
like fatal diseases

• PCheck: auto-generating
& invoking configuration
checking code to enforce
early detection.

Conclusion

