
Soft Updates Made Simple and Fast
on Non-volatile Memory

Mingkai Dong, Haibo Chen
Institute of Parallel and Distributed Systems,

Shanghai Jiao Tong University

@ ATC ‘17



Non-volatile Memory (NVM)
ü Non-volatile
ü Byte-addressable
ü High	throughput	and	low	latency

2



NVM File Systems (NVMFS)
Existing	NVMFS	use	journaling or	copy-on-write for	crash	consistency
Synchronous	cache	flushes	are	necessary
Cache	flushes	are	expensive!
Other	options	for	crash	consistency?

3

A

B C

ED E’

C’

A’

File	System
Metadata

Journal
Area

inode inode



NVM File Systems (NVMFS)
Existing	NVMFS	use	journaling or	copy-on-write for	crash	consistency
Synchronous	cache	flushes	are	necessary
Cache	flushes	are	expensive!
Other	options	for	crash	consistency?

4

A

B C

ED E’

C’

A’

File	System
Metadata

Journal
Area

inode inode



DISK

Soft Updates
Latest	metadata	in	DRAM
§ Updated	in	DRAM	with	dependency	tracked
ü DRAM	performance
ü No	synchronous	disk	writes
Consistent	metadata	in	disks
§ Persisted	to	disks	with	dependency	enforced
ü Always	consistent
ü Immediately	usable	after	crash

5

DRAM (Page	cache)

Traditional	Soft	Updates



Soft Updates
Update	dependencies
§ E.g.,	allocating	a	new	data	block

1. Allocate	in	bitmap
2. Fill	data	in	the	block
3. Update	pointer	to	the	block

6

inode

new
data block

block bitmap



Soft Updates Is Complicated
Delayed	disk	writes
§ Auxiliary	structures	for	each	update
§ More	complex	dependencies

7

inode

new
data block

block bitmap

Figures	from	Soft	Updates:	A	Technique	for	Eliminating	Most	Synchronous	Writes	in	the	Fast	Filesystem, ATC	’99	



Soft Updates Is Complicated
Delayed	disk	writes
§ Auxiliary	structures	for	each	operation
§ More	complex	dependencies
Cyclic	dependencies
§ Rolling	back/forward

8

Inode #6

inode #4
inode #5

Inode #7

<--,	#0>

<A,	#4>

<E,	#7>

inode Block Directory Block

inode #6

inode #4
inode #5

inode #7

inode block
(in	page	cache)

inode #6

inode #4
inode #5

inode #7

inode block

inode #6

inode #4
inode #5

inode #7

inode block

inode #6

inode #4
inode #5

inode #7

inode block
Rollback
inode #6

Rollforward
inode #6Flush	block	to	disks



Soft Updates Is Complicated
Delayed	disk	writes
§ Auxiliary	structures	for	each	operation
§ More	complex	dependencies
Cyclic	dependencies
§ Rolling	back/forward

9

The mismatch between per-pointer-based dependency tracking
and block-based interface of traditional disks 



Soft Updates Meets NVM
Soft	Updates
ü No	synchronous	cache	flushes
ü Immediately	usable	after	crash
NVM:	byte-addressable	and fast
ü Direct	write	to	NVM	without	delays
ü No	false	sharing	=>	no	rolling	back/forward
ü Simple	dependency	tracking/enforcement

10



SoupFS
A	simple	and	fast	NVMFS	derived	from	soft	updates
§ Hashtable-based	directories

§ No	false	sharing

§ Pointer-based	dual	views
§ No	synchronous	cache	flushes

§ Semantic-aware	dependency	tracking/enforcement
§ Simple	dependency	tracking/enforcement

Get	the	best	of	both	Soft	Updates	and	NVM

11



Overview
Background
Design & Implementation
§ Hashtable-based	directories
§ Pointer-based	dual	views
§ Semantic-aware	dependency	tracking/enforcement
Evaluation
Conclusion

12



Overview
Background
Design & Implementation
§ Hashtable-based	directories
§ Pointer-based	dual	views
§ Semantic-aware	dependency	tracking/enforcement
Evaluation
Conclusion

13



Block-based Directories
Block-based	file	systems	usually	use	block-based	directories
§ False	sharing

✘ Cyclic	dependency
✘ Rolling	back/forward

§ Slow	access
✘ Linear	scan

14

Directory 
inode

indirect
block

1.TxT|32
.TxT|38

2

fs-long-lon
g.exe|512

l+f.dir|12



Hashtable-based Directories
Optimized	for	cache	lines
ü No	false	sharing
ü No	cyclic	dependency
Efficient	access
ü No	linear	scan

Filename
Pointer

inode
Pointer

Consistent 
Next

Latest 
Next

Buckets
Directory 

inode

inodeHash Len Filename

15

1 2 3 4 …0



Overview
Background
Design & Implementation
ü Hashtable-based	directories
§ Pointer-based	dual	views
§ Semantic-aware	dependency	tracking/enforcement
Evaluation
Conclusion

16



DualViews
Latest	view	in	page	cache
Consistent	view	in	disks

Dual	views
§ Eliminate	synchronous	writes
§ Provide	usability	after	crash

17

DISK

DRAM (Page	cache)

Traditional	Soft	Updates



DualViews
Latest	view	in	page	cache
Consistent	view	in	disks	NVM
Latest	view?

Another	copy	of	metadata	in	DRAM
✗ Double	writes
✗ Double	storage	overhead
✗ Unnecessary	synchronizations

18

DISK	NVM

DRAM (Page	cache)

Soft	Updates	on	NVM

Challenge:	 How	to	present	latest	view	efficiently?



Pointer-based Dual Views
Reuse	data	structures	in	both	views
Distinguish	views	by	different	pointers/structures

19

NVM

DRAM

Soft	Updates	on	NVM



Pointer-based Dual Views
Reuse	data	structures	in	both	views
Distinguish	views	by	different	pointers/structures

20

Data	Structures In	Consistent	View In	Latest	View
inode SoupFS inode VFS	inode
dentry consistent	next	pointer latest	next pointer
hash	table bucket latest bucket	if	exists
B-tree root/height in	SoupFS inode root/height in	VFS	inode



Pointer-based Dual Views

21

Buckets
Directory 

inode

D

1 2 3 4 …0

Directory
VFS	
inode

Volatile in DRAM
Updates to NVM w/o persistence guarantee
Persisted in NVM

Dir

File	A File	B File	C File	D

Latest
Next

Consistent
Next

C B A

inodeFilename

Dir

File	A File	B File	C File	D

Latest	View

Consistent	View



Pointer-based Dual Views

22

Buckets
Directory 

inode

D

1 2 3 4 …0

Directory
VFS	
inode

Volatile in DRAM
Updates to NVM w/o persistence guarantee
Persisted in NVM

Dir

File	A File	B File	C File	D

Latest
Next

Consistent
Next

C B A

inodeFilename

Dir

File	A File	B File	C File	D

Latest	View

Consistent	View

Ø create	E File	E



Pointer-based Dual Views

23

Buckets
Directory 

inode

D

1 2 3 4 …0

Directory
VFS	
inode

Volatile in DRAM
Updates to NVM w/o persistence guarantee
Persisted in NVM

Latest
Next

Consistent
Next

C B A

inodeFilename

Latest Buckets
Ø create	E

Dir

File	A File	B File	C File	D

Dir

File	A File	B File	C File	D

Latest	View

Consistent	View

File	E



Pointer-based Dual Views

24

Buckets
Directory 

inode

D

1 2 3 4 …0

Directory
VFS	
inode

Volatile in DRAM
Updates to NVM w/o persistence guarantee
Persisted in NVM

Latest
Next

Consistent
Next

C B A

inodeFilename

Latest Buckets
Ø create	E

Dir

File	A File	B File	C File	D

Dir

File	A File	B File	C File	D

Latest	View

Consistent	View

File	E

E



Pointer-based Dual Views

25

Buckets
Directory 

inode

D

1 2 3 4 …0

Directory
VFS	
inode

Volatile in DRAM
Updates to NVM w/o persistence guarantee
Persisted in NVM

Latest
Next

Consistent
Next

C B A

inodeFilename

Latest Buckets

3
Ø create	E

Dir

File	A File	B File	C File	D

Dir

File	A File	B File	C File	D

Latest	View

Consistent	View

File	E

E



Pointer-based Dual Views

26

Buckets
Directory 

inode

D

1 2 3 4 …0

Directory
VFS	
inode

Volatile in DRAM
Updates to NVM w/o persistence guarantee
Persisted in NVM

Latest
Next

Consistent
Next

C B A

inodeFilename

Latest Buckets

3
§ create	E

Dir

File	A File	B File	C File	D

Dir

File	A File	B File	C File	D

Latest	View

Consistent	View

File	E

E



Pointer-based Dual Views

27

Buckets
Directory 

inode

D

1 2 3 4 …0

Directory
VFS	
inode

Volatile in DRAM
Updates to NVM w/o persistence guarantee
Persisted in NVM

Latest
Next

Consistent
Next

C B A

inodeFilename

Latest Buckets

3
§ create	E
Ø unlink	B

Dir

File	A File	B File	C File	D

Dir

File	A File	B File	C File	D

Latest	View

Consistent	View

File	E

E

❌



Pointer-based Dual Views

28

Buckets
Directory 

inode

D

1 2 3 4 …0

Directory
VFS	
inode

Volatile in DRAM
Updates to NVM w/o persistence guarantee
Persisted in NVM

Latest
Next

Consistent
Next

C B A

inodeFilename

Latest Buckets

3
§ create	E
Ø unlink	B

Dir

File	A File	B File	C File	D

Dir

File	A File	B File	C File	D

Latest	View

Consistent	View

File	E

E

❌



Pointer-based Dual Views

29

Buckets
Directory 

inode

D

1 2 3 4 …0

Directory
VFS	
inode

Volatile in DRAM
Updates to NVM w/o persistence guarantee
Persisted in NVM

Latest
Next

Consistent
Next

C B A

inodeFilename

Latest Buckets

3
§ create	E
§ unlink	B

Dir

File	A File	B File	C File	D

Dir

File	A File	B File	C File	D

Latest	View

Consistent	View

File	E

E

❌



Pointer-based Dual Views

30

Buckets
Directory 

inode

D

1 2 3 4 …0

Directory
VFS	
inode

Volatile in DRAM
Updates to NVM w/o persistence guarantee
Persisted in NVM

Latest
Next

Consistent
Next

C B A

inodeFilename

Latest Buckets

3

Dir

File	A File	B File	C File	D

Dir

File	A File	B File	C File	D

Latest	View

Consistent	View

File	E

E

❌

Directory 
inode

0 1 2 3 4 …

✔✔✔✔

§ create	E
§ unlink	B



Pointer-based Dual Views

31

Buckets
Directory 

inode

D

1 2 3 4 …0

Directory
VFS	
inode

Volatile in DRAM
Updates to NVM w/o persistence guarantee
Persisted in NVM

Latest
Next

Consistent
Next

C B A

inodeFilename

Latest Buckets

3

Dir

File	A File	B File	C File	D

Dir

File	A File	B File	C File	D

Latest	View

Consistent	View

File	E

E

❌§ create	E
§ unlink	B

Directory
VFS	
inode

Directory 
inode

0 1 2 3

3 ✔ ✔✔✔



Pointer-based Dual Views

32

Buckets
Directory 

inode

D

1 2 3 4 …0

Directory
VFS	
inode

Volatile in DRAM
Updates to NVM w/o persistence guarantee
Persisted in NVM

Latest
Next

Consistent
Next

C B A

inodeFilename

Latest Buckets

3

Dir

File	A File	B File	C File	D

Dir

File	A File	B File	C File	D

Latest	View

Consistent	View

File	E

E

❌§ create	E
§ unlink	B



§ create	E
§ unlink B

Pointer-based Dual Views

33

Buckets
Directory 

inode

D

1 2 3 4 …0

Directory
VFS	
inode

Volatile in DRAM
Updates to NVM w/o persistence guarantee
Persisted in NVM

Dir

File	A File	B File	C File	D

Latest
Next

Consistent
Next

C B A

inodeFilename

Dir

File	A File	B File	C File	D

Latest	View

Consistent	View

File	E
Latest Buckets

3

E

❌



§ create	E
§ unlink B

Pointer-based Dual Views

34

Buckets
Directory 

inode

D

1 2 3 4 …0

Directory
VFS	
inode

Volatile in DRAM
Updates to NVM w/o persistence guarantee
Persisted in NVM

Dir

File	A File	B File	C File	D

Latest
Next

Consistent
Next

C B A

inodeFilename

Dir

File	A File	B File	C File	D

Latest	View

Consistent	View

File	E
Latest Buckets

3

E

❌

File	E



§ create	E
§ unlink B

Pointer-based Dual Views

35

Buckets
Directory 

inode

D

1 2 3 4 …0

Directory
VFS	
inode

Volatile in DRAM
Updates to NVM w/o persistence guarantee
Persisted in NVM

Dir

File	A File	B File	C File	D

Latest
Next

Consistent
Next

C B A

inodeFilename

Dir

File	A File	B File	C File	D

Latest	View

Consistent	View

File	E
Latest Buckets

3

E

❌

File	E❌



§ create	E
§ unlink B

Pointer-based Dual Views

36

Buckets
Directory 

inode

D

1 2 3 4 …0

Directory
VFS	
inode

Volatile in DRAM
Updates to NVM w/o persistence guarantee
Persisted in NVM

Dir

File	A File	B File	C File	D

Latest
Next

Consistent
Next

C B A

inodeFilename

Dir

File	A File	B File	C File	D

Latest	View

Consistent	View

File	E
Latest Buckets

3

E

❌

File	E❌



§ create	E
§ unlink B

Pointer-based Dual Views

37

Buckets
Directory 

inode

D

1 2 3 4 …0

Directory
VFS	
inode

Volatile in DRAM
Updates to NVM w/o persistence guarantee
Persisted in NVM

Dir

File	A File	C File	D

Latest
Next

Consistent
Next

C A

inodeFilename

Dir

File	A File	C File	D

Latest	View

Consistent	View

File	E
Latest Buckets

3

E

File	E



Pointer-based Dual Views
Reuse	data	structures	in	both	views
Distinguish	views	by	different	pointers/structures

ü Eliminate	synchronous	writes
ü Provide	usability	after	crash

ü No	double	write
ü Little	space	overhead

38

NVM

DRAM

Soft	Updates	on	NVM



Overview
Background
Design & Implementation
ü Hashtable-based	directories
ü Pointer-based	dual	views
§ Semantic-aware	dependency	tracking/enforcement
Evaluation
Conclusion

39



Dependency Tracking
Auxiliary	structures	for	each	updates

40



Dependency Tracking
Auxiliary	structures	for	each	updates

The	semantic	gap	between
the	page	cache	(where	enforcement	happens)

and	the	file	system	(where	tracking	happens)

After	removing	page	cache,	SoupFS involves	semantics in	dependency	
tracking/enforcement

41



Semantic-aware Dependency Tracking
Track	semantic	operations	with	complementary	information
§ Enough	for	dependency	enforcement

42

Operation	Type Complementary	Information	(pointers/integers)
diradd added	dentry,	source	directory∗,	overwritten	inode∗
dirrem removed	dentry,	destination	directory∗
sizechg the	old	and	new	file	size	
attrchg nothing

Information	tagged	with	∗ is	for	rename	operation.



Semantic-aware Dependency Tracking
Track	semantic	operations	with	complementary	information
§ Enough	for	dependency	enforcement
Operations	are	stored	in	operation	list	of	each	VFS	inode

43

dirty	inode list VFS	
inode
list	next
operation	

list

list	next
operation	type
Complimentary	
information

VFS	
inode
list	next
operation	

list

VFS	
inode
list	next
operation	

list



Semantic-aware Dependency Enforcement
Persister daemons	traverse	the	dirty	inode list	in	background
§ persist	each	operation	from	the	latest	view	to	the	consistent	view	

with	respect	to	update	dependencies

44

dirty	inode list VFS	
inode
list	next
operation	

list

list	next
operation	type
Complimentary	
information

VFS	
inode
list	next
operation	

list

VFS	
inode
list	next
operation	

list



Overview
Background
Design & Implementation
ü Hashtable-based	directories
ü Pointer-based	dual	views
ü Semantic-aware	dependency	tracking/enforcement
Evaluation
Conclusion

45



Evaluation Setup
Platform
§ Intel	Xeon	E5	server	with	two	8-core	processors
§ 48	GB	DRAM	and	64	GB	NVDIMM

File	Systems
§ SoupFS,	PMFS,	NOVA,	Ext4-DAX,	Ext4

NVM	Write	Delay	Simulation
§ ndelay() after	clflush

Benchmarks
§ Micro-benchmarks:	100	iterations	of	104 create/unlink/mkdir/rmdir
§ Filebench and	Postmark

46



57.5 57.7

0

5

10

15

20

create unlink mkdir rmdir

La
te
nc
y	
(u
s/
op

)

Ext4
Ext4-DAX
PMFS
NOVA
SoupFS

Micro-benchmark Latency

47

Inefficient	Directory	Organization

Lowest	Latency

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

CD
F

Latency	(us)

EXT4
Ext4-DAX
PMFS
NOVA
SoupFS



0

5

10

15

0 200 400 600 800

La
te
nc
y(
us
)

Delay	(ns)

Create

NOVA
SoupFS

0

4

8

12

16

20

0 200 400 600 800

La
te
nc
y	
(u
s)

Delay	(ns)

Unlink

PMFS

NOVA

SoupFS

Sensitivity to NVM Write Delay

48

No	effect

55

60

65

70

PMFS

↑~200%

↑~250%



0

50

100

150

200

250

300

350

Read Write

Th
ro
ug
hp

ut
	(M

B/
s)

Postmark
Ext4
Ext4-DAX
PMFS
NOVA
SoupFS

Postmark & Filebench

49

↑~50%

0

200

400

600

800

1000

1200

Th
ro
ug
hp

ut
	(x
10

00
	o
ps
/s
)

Threads

Fileserver-1K
Ext4
Ext4-DAX
PMFS
NOVA
SoupFS



Overview
Background
Design & Implementation
ü Hashtable-based	directories
ü Pointer-based	dual	views
ü Semantic-aware	dependency	tracking/enforcement
Evaluation
Conclusion

50



Conclusion
§ Soft	updates	is	complicated	due	to	the	mismatch	between

per-pointer-based	dependency	tracking and	block-based	interface	of	
traditional	disks

§ We	design	and	implement	SoupFS
ü Hashtable-based	directories
ü Pointer-based	dual	views
ü Semantic-aware	dependency	tracking/enforcement

§ Soft	updates	can	be	made	simple	and	fast	on	NVM

51

Thanks & Questions? ;-)


