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Abstract— Networks of various kinds often experience anoma- A. Related Work and Contribution
lous behaviour. Examples include attacks or large data trasfers
in IP networks, presence of intruders in distributed video Most methods of network anomaly detection are based on

surveillance systems, and an automobile accident or an umtiely network traffic models. Brutlag uses as an extension of the

congestion in a road network. Machine learning techniques Ny : . : . _
enable the development of anomaly detection algorithms tha Holt-Winters forecasting algorithm, which supports imoen

are non-parametric, adaptive to changes in the characteriics @l model updating via exponential smoothing [1]. Hajji sise
of normal behaviour in the relevant network, and portable Gaussian mixture model, and develops an algorithm based on
across applications. In this paper we use two different datsets, a stochastic approximation of the Expectation-Maximuzati
pictures of a highway in Quebec taken by a network of webcams (EM) algorithm to obtain estimates of the model parameters
and IP wraffic statistics from the Abilene network, as exampes 151 yamanishi et al. also assume a hierarchical structdire o
in demonstrating the applicability of two machine learning . . . . B e
algorithms to network anomaly detection. We investigate te Gaussian mixtures in developing the “SmartSifter” toolf bu
use of the block-based One-Class Neighbour Machine and the uses different algorithms for updating the model pararseter
recursive Kernel-based Online Anomaly Detection algoritims. [3]. They use a variant of the Laplace law in the discrete
domain, and a modified version of the incremental EM algo-
rithm in the continuous domain. They test their algorithm to
|. INTRODUCTION detect network intrusion on the standard ACM KDD Cup 1999
dataset. Lakhina et al. apply Principal Component Analysis
A network anomaly is a sudden and short-lived deviatigPCA) to separate IP network data into disjoint “normal”
from the normal operation of the network. Some anomalies ag8d “anomalous” subspaces, and signal an anomaly when
deliberately caused by intruders with malicious intenthsughe magnitude of the projection onto the anomalous subspace
as a denial-of-service attack in an IP network, while othegkceeds a threshold [4]-[6]. Huang et al. build on Lakhina’s
may be purely an accident such as an overpass falling irceéntralised PCA method of anomaly detection from [6], and
busy road network. Quick detection is needed to initiate develop a framework where local PCA analysis and stochastic
timely response, such as deploying an ambulance after a rgagkrix perturbation theory is used to develop an adaptive,
accident, or raising an alarm if a surveillance network dste distributed protocol [7].

an intruder. Researchers have recently begun to use machine learning
Network monitoring devices collect data at high ratesechniques to detect outliers in datasets from a variety of
Designing an effective anomaly detection system consdtyuerfields. Gardener et al. use a One-Class Support Vector Machin
involves extracting relevant information from a volumisou(OCSVM) to detect anomalies in EEG data from epilepsy
amount of noisy, high-dimensional data. It is also impadrtapatients [8]. Barbara et al. have proposed an algorithm to
to design distributed algorithms as networks operate undi#tect outliers in noisy datasets where no information is
bandwidth and power constraints and communication cogigailable regarding ground truth, based on a Transductive
must be minimised. Confidence Machine (TCM) [9]. Transduction is an alterretiv
Different anomalies exhibit themselves in network stafist to induction, in that instead of using all the data points
in different manners, so developing general models of nbrnig induce a model, one is able to use a small subset of
network behaviour and of anomalies is difficult. Model-lias¢hem to estimate unknown properties of test points. Ma and
algorithms are also not portable across applications, aed e Perkins present an algorithm using support vector regressi
subtle changes in the nature of network traffic or the moeitor perform online anomaly detection on timeseries data in.[10]
physical phenomena can render the model inappropriate. N#ier et al. present an adaptive anomaly detection algorith
parametric, learning algorithms based on machine learnitigtt is based on a Markov-modulated Poisson process model,
principles are therefore desirable as they can learn theeatand use Markov Chain Monte Carlo methods in a Bayesian
of normal measurements and autonomously adapt to varsati@pproach to learn the model parameters [11].
in the structure of “normality”. An example of a machine learning approach to network



anomaly detection is the time-based inductive learning miegions and corresponding physical events are then ddclare
chine (TIM) of Teng et al. [12]. Their algorithm constructs anomalous.
set of rules based upon usage patterns. An anomaly is fignall Real multidimensional data exhibit distributions whicle ar
when the premise of a rule occurs but the conclusion does mighly sparse. Moreover, distributions of raw data may lack
follow. Singliar and Hauskrecht use a support vector maehimvariance with respect to generating events. That is, iphys
to detect anomalies in road traffic [13]. They use statisti@vents pertaining to the same regiondmrmay generate mea-
collected by a sophisticated network of sensors includisgrements in completely different regions ®f. Therefore,
microwave loops and lasers, and design a detector for ratés often desirable to reduce the dimensionality of rawadat
traffic incidents. via some feature extraction mechanigm R — R! where
Our objective in this paper is to show the applicability < k, that is robust to sparsity and variance induced by the
and need for learning algorithms in detecting anomalotimnsition f : S — R¥. We then construct a minimum volume
behaviour in a distributed set of network measurementsnFraet from the features and not from the raw data.
the wide variety of machine learning techniques availabke,
choose the One Class Neighbor Machine (OCNM) proposed
by Mufioz and Moguerza in [14], and the recursive Kernel- We use two different datasets to advocate the applicability
based Online Anomaly Detection (KOAD) algorithm that wef machine learning algorithms to network anomaly detectio
developed in [15]. We present our case via two examples: sed) Transports Quebec dataseTransports Quebec main-
qguences of images from Transports Quebec’s camera netwdaikns a set of webcams over its major roads [18]. These
and IP timeseries data from the Abilene backbone netwodameras record still images every five minutes. We collected
We demonstrate that both algorithms are effective in dietgct images recorded by cameras over a period of four days (Sep.
anomalies and motivate the development of more advanc&@,to Oct. 03, 2006) on Quebec’s Autoroute 20. Each 5-minute
fully adaptive and fully distributed, learning algorithms interval constitutes imestep
L Anomaly detection in a sequence of images relies mainly on
B. Organization of Paper the extraction of appropriate information from the seqeenc
The rest of this paper is organized as follows. Sectiorhere are two fundamental reasons for this. First, the large
Il defines the problem we address. Section Il describédmensionality inherent to image processing leads to dtiama
the Transports Quebec and Abilene datasets and Sectionin¥rease in implementation costs. Second, large varidtion
reviews the OCNM and KOAD algorithms. Section V presentsperating conditions such as brightness and contrast (whic
our results and Section VI summarises our conclusions aack subject to the time of day and weather conditions) and
discusses the need for distributed, learning algorithms feolour content in the images (which is subject to seasom), ca
network anomaly detection. cause abrupt and undesirable changes in the raw data.
We decided to use the discrete wavelet transform (DWT)
to process the images. The DWT is known for its ability to
The anomaly detection problem can be formulated as faixtract spatially localised frequency information. Wefpen
lows. A continuous stream of data pointss R* constitutes a the two-dimensional DWT on every image and average the
collection of measuremen{s:; }/_, governed by a probability energy of transformation coefficients within each subband t
distribution P. Although measurements correspond to certaiichieve approximate shift invariance of the feature ettrac
physical events in the event spagethe mappingf : S — R* We expect that the appearance of a novel image in the
between them may not be known. We assume thatan sequence will manifest itself as a sudden change in the power
be divided into two subspaces corresponding to normal ajdthe frequency content of the vector of subband interssitie
anomalous physical conditions. In many practical situetio At each timestep, we constructveavelet feature vectoirom
it is of interest to infer the membership of an event iRach image obtained by each camera node.
a particular subspace using the corresponding measuremeng) Abilene datasetThe Abilene backbone network in the
As the probability distribution” governing measurements isUS contains11 core routers. Abackbone flowconsists of
unknown, some mechanism should facilitate learning its vgdackets entering the Abilene network at one particular core
umetric representation from the collecti¢r; }/_,. A general router and exiting at another. The data constitute a tineser
approach to the aforementioned problem of learning suchofithe entropiesof the 4 main packet header fields (source IP
representation consists of constructing a Minimum Volumgddress, destination IP address, source port number atid des
Set (MVS) with probability masg} € (0, 1) with respect to nation port number) in each afl x 11 = 121 backbone flows
distribution P for a volume measurg [16]: pertaining to each timestep. The entropy for each backbone
* . flow, at each timestep, for each header field, is computed afte
G = argmin{¢(G) - P(G) = §,G measurablp (1) constructing an empi?ical histogram of the reIevanthgﬁdh{r
For a recent review of practical methods for estimati#g, distribution for that backbone flow during that timestepeTh
see [17]. Online estimation of minimum volume sets satigfyi four component entropies are finally concatenated to olatiain
(1) allows the identification of high-density data regiortsane entropy timeseries of the21 backbone flows. Physical anoma-
the mass ofP is concentrated. Data points lying outside thedeus phenomena cause changes in the distributions of Eacket
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belonging to the responsible backbone flow, and Lakhina etlf §; > 1v4, we infer thatx; is sufficiently linearly in-
al. showed in [6] that these changes are best captured dgpendent from the dictionary to be considered an unusual
changes in the entropies. The duration of a timestep is agairent. It may indeed be an anomaly, or it may represent an
five minutes, and the length of the Abilene timeserie20is6 expansion or migration of the space of normality. In thisegas
timesteps pertaining to one week (Dec. 15 to 21, 2003). we do the following: raise an “Orange” alarm, keep track of
the contribution of the relevant input vectgf in explaining
IV. ANOMALY DETECTION subsequent arrivals fof timesteps, and then make a firm

A. One-Class Neighbor Machine (OCNM) decision on it.

The OCNM algorithm proposed by Mufioz and Moguerza at timestept + ¢, we re-evaluate the errar in projecting
provides an elegant means for estimating m_ir_1imum volumg onto dictionaryD, ., corresponding to timestept ¢. Note
sets [14]. It assumes a sample sgtcomprising 7, F-  that the dictionary may have changed between timestepsl
dimensional data pointgx; }{_,. The algorithm requires the ; ; y, and the value of at this re-evaluation may consequently
choice of a sparsity measure, denotedgb¥=xample choices pe different from thej, at timestept. If the value of§ after
of a sparsity measure are theh nearest neighbour Euclideanhe re-evaluation is found to be less than we lower the
distance and the average of the first nearest-neighbour grange alarm and keep the dictionary unchanged.
distances. The OCNM algorithm sorts the values of the
measure for the set of points, and subsequently identifies If the value ofé is found instead to be greater thanafter
those points that lie inside the minimum volume set (MVShe re-evaluation at timestefp+ ¢, we perform a secondary
with the smallest sparsity measuyeup to a specified fraction “usefulness” test to resolve the orange alarm. The usedaine
p of the number of points irS. of x; is assessed by observing the kernel valuesofvith

If the k-th nearest neighbour distance functionisused astkg i = ¢ + 1,...,t + £. If a kernel value is high (greater
sparsity measure, the OCNM algorithm involves calculatingan a thresholdi), then ¢(x;) is deemed close te)(x;).
the distance from every point; to everyother point in the If a significantnumberof the kernel values are high, then
sample set. As each point I5-dimensional and there atE x; cannot be considered anomalous; normal traffic has just

timesteps, the complexity i©(T2F). migrated into a new portion of the feature space andhould
) _ be entered into the dictionary. Contrarily if almost all tkek
B. Kernel-based Online Anomaly Detection (KOAD) values are small, ther; is a reasonably isolated event, and
Consider a set of multivariate measurements}’_,. In an should be heralded as an anomaly. We evaluate:
appropriately chosen feature spa€evith an associated kernel )
function k(x;,x;), the features corresponding to the normal Z I(k(x¢,%;) > d) | > e, ©)
traffic measurements shouttiister. Then it should be possible it 1

to describe the region of normality using a relatively Sma\'/l/here]l is the indicator function and € (0, 1) is a selected

?;f(t;r;a% 0{ 1g]prar2?;r?;tilx4lln?:rlr)gslgr(]ite &%Z%inifletmhztntsconstant. In this manner, by employing the secondary “dsefu
171 j=1 ' isj=1 T€P =1 ness test”, we are able to distinguish between an arrival tha

are entered into the dictionary and we expect the size iS an anomaly, from one that is a result of a change in the

the dlct|qnary (1) to be much less_thart, leading _to region of normality. If (3) evaluates true, then we lower the
computational and storage savings. Feature ve¢tat) is

said to beapproximatelylinearly dependent or{e(%;)} 2 relevant orange alarm to green (no anomaly) and =ddo

j=1 icti
with approximation thresholds, if the projection errors, the dictionary. If (3) evalyl,Jates false, we elevate the =aiev
orange alarm to a “Red2” alarm.

satisfies the following criterion:

S0

M 2 The KOAD algorithm also deletes obsolete elements from
S =min | Y a;6(%;) — d(xi)|| <. (2) the dictionary as the region of normality expands or migrate
a | thereby maintaining a small dictionary. In addition, it in-
corporates exponential forgetting so that the impact ot pas
wherea = {aj}?il is the optimal coefficient vector. observations is gradua”y reduced.
The Kernel-based Online Anomaly Detection (KOAD) algo-
rithm operates at each timestepn a measurement vectey. Assuming a dictionary containing elements, the computa-

It begins by evaluating the errdg in projecting the arriving tional complexity of the KOAD algorithm i€)(m?) for every

x; onto the current dictionary (in the feature domain). Thistandard timestep, an@(m?3) on the rare occasions when
error measuré, is then compared with two thresholdsand an element removal occurs. The KOAD complexity is thus
Vo, Wherevy < 1. If 0 < v1, we infer thatx, is sufficiently independent of time, making the algorithm naturally suited
linearly dependent on the dictionary, and represents nornba online applications. Our experiments have shown that hig
traffic. If 6 > 15, we conclude thak; is far away from the sparsity levels are achieved in practice, and the dictipeae
realm of normal behaviour, and immediately raise a “RedHoes not grow indefinitely. See [15] for details regarding th
alarm to signal an anomaly. KOAD algorithm.
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Fig. 1. Pictures from the Transports Quebec camera netwanmesponding to timestep = 368. Congestion is evident in all the images at this timestep.
Both OCNM and KOAD flagged this timestep as anomalous for megtesentative parameter settings, when run in a distdbtashion in each of thé
nodes.

C. Monitoring Architecture from Transports Quebec webcam network. This is an example

We propose two monitoring architectures: a distributeﬂjplica‘,ﬂon of the distributed mpnitoring arc':hitectu.rsddbed
approach and a centralised approach. In the distributed-ardn Section IV-C. Our data consists of a seriesiéd timesteps
tecture, the detection algorithms are locally run at eaateno c0rresponding to daylight hours during the Sep. 30 to Oct. 03
After each timestep, each node makes a local decision rege#d06 period. We use the averaged energy of DWT coefficients
ing the presence or absence of an anomaly at that timest§§€ Section lll-.1) from6 subbands from each of the
and transmits dinary result to the Central Monitoring Unit €ameras (nodes). In our application with= 6 cameras, we
(CMU). The CMU then makes a decision on the location ¢tS€dn = 3 as the central decision rule.
an anomaly in time and space, if at leastof the c nodes  We present illustrative images from tifecamera network
individually signalled an anomaly. The idea behind this corresponding to a traffic congestion in Fig. 1. Given the
out-of¢ detection scheme is that in many applications, suctormal flow of traffic during the length of our dataset, short
as in a road networkgona fideanomalies such as an untimelyperiods of congestion constitute an example of a road n&twor
traffic congestion are simultaneously evident to multipldes. anomaly. This timestep was flagged in éllnodes by both
Individual flags are likely to be caused by comparably leS3CNM and KOAD as anomalous, for most representative
important and independent events such as a single camagorithm parameter settings.

malfunctioning. _ Fig. 2(top panel) shows the results of wavelet analysis of
In the centralised architecture, all measurements are Cofls image sequence from one camera. We selected one of the

municated to the Central Monitoring Unit. The CMU thensjy cameras for preliminary assessment of feature extracti
runs the detection algorithm. The centrallsgd approacft@o quality. It can be seen that the high-frequency componeits o
desirable and necessary to detect anomalies that exhéit-th the feature vector show the expected variation in the \igini
selves through distributed ghanges in the global measumem&f traffic jams. Abrupt changes to the position of a camera
vector. The works of Lakhina et al. have shown that traffigenerate sudden spikes in the feature vector componegts. Fi
volume distributions in large bacl_<bone IP netyvork; exhabit 5 (middle panel) shows the distance measures obtained using
covariance structure, and d_etectmg a break in _thls strectyhe OCNM algorithm withk set to50 and usingy = 0.90
enables one to unearth a wide range of anomalies [4]-{6]. 15 signal the10% outliers. Fig. 2(bottom panel) shows the
variations in KOAD projection errop,. We ran the KOAD
algorithm here with the thresholds = 0.25 andvy = 0.50,
a Gaussian kernel having standard deviatidi, and default

In this section, we study the effectiveness of OCNM anskttings for all other parameters (see [15]) which incluties
KOAD in detecting unusual events in Quebec’s road netrange alarm being resolved aftgp timesteps (i.e/ = 20).
work. We apply OCNM and KOAD to image sequence®Ve begin our analysis of Fig. 2 at= 51 with the previous

V. EXPERIMENTAL RESULTS
A. Transports Quebec Data Analysis
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Fig. 2. Top panel: Annotated plot of average wavelet coeffits in subbands Fig. 3. ROC curves showing variation in probability of déiee (Pp) with
evolving through time. Approximation coefficients are shoy dashed line. probability of false alarmsRg 4) for distributed anomaly detection based on
Solid and dashed lines indicate transform levelsind 6 corresponding to wavelet feature extraction. Solid line shows KOAD while lued line shows
highest and lowest frequency content of the DWT, respdygtiiiddle panel: OCNM data clustering. Transports Quebec dataset.

OCNM usingkth nearest-neighbour distance, with dashed line indig&tivo

MVS threshold. Bottom panel: KOAD projection erréy with dashed line

indicating lower threshold/;. Transports Quebec dataset, Cam@ra Fig. 4(a) shows the variations ih, obtained using the

KOAD algorithm with vy = 0.01,»5 = 0.02, a Gaussian

timesteps constituting the training period in this applma  kernel of standard deviatiod.6, and default settings for all
Fig. 3 presents the receiver operating characteristicsQ)RQother parameters (see [15]). We start our analysis at

curves showing the variation in the probability of deteatio301, with the previous timesteps disregarded as constitute
(Pp) with the probability of false alarmsHr,4), for the the training period in this application. Fig. 4(b) shows the
OCNM and KOAD algorithms applied to the Transportsnagnitude of the energy in the residual components using the
Quebec dataset. In our experiments, we used OCNM with tREA subspace method of anomaly detection [6]. We used
nearest-neighbour parameterset to50, and varyingu from  principle components for the normal subspace, in accoelanc
0.50 to 0.95 to signal between0% and5% outliers. We ran with [6]. Fig. 4(c) shows the distance measures obtainathusi
KOAD with the thresholds set to; = 0.00001,, = 0.05, OCNM with & = 50, together with the threshold indicating the
and using a Gaussian kernel where the standard deviatior08% minimum volume set. The spike positions in Figs. 4(a-c)
the kernel function is varied between002 and 0.020. The indicate the anomalies signalled by KOAD, PCA and OCNM,
other KOAD parameters are retained at their default valuesspectively. Fig. 4(d) isolates for comparison the postiof
(see [15]), with an orange alarm resolved aftértimesteps the anomalies detected by each individual algorithm.

(i.e. £ = 20). It is evident from Fig. 4(c) that the OCNM-th nearest
Although our experiments were performed on a limitedleighbour distance metric experiences an upward trendgluri
data set, this result provides a preliminary assessmenttigé one-week period. This phenomenon was observed for

the anomaly detection algorithms based on wavelet featwslues ofk that ranged from 0 to 200. Although the positions
extraction mechanism and machine learning data clusteriog the spikes (with respect to the immediate surrounding
approaches. It can be clearly seen from Fig. 3 that the KOAipnesteps) in Fig. 4(c) largely correspond with those in. Fig

Il Il
100 200

detector outperforms the OCNM detector. 4(a-b), we see that most of the outliers signalled by OCNM
_ . lie in the latter part of the plot.
B. Abilene Network Data Analysis The increasing distance metric suggests that the space of

In this subsection we present the results of applying OCNRPrmal traffic expands over the recorded time period. The
and KOAD to the Abilene dataset. Here we want to als6OAD algorithm is best able to detect anomalies in such
detect those anomalies that cause sudden changes in &hgituation, as the dictionary in this algorithm dynamic
overall distribution of traffic over the network, as oppose@ith obsolete elements being removed and new, more relevant
to affecting a single link, during a particular timestep.ush €lements added as necessary. Indeed, we noticed in our exper
in this application we implement the centralised architeet iments with this particular dataset that the dictionary rhers
proposed in Section IV-C. For discussions on the wide rafige@ange significantly over the reported period.
anomalies seen in IP networks, refer to the works of LakhinaFig. 4(c) also argues the need for a sequential or block-
et al. [4]-[6]. Here we also compare our results with thodgased version of OCNM where outliers may be incrementally
obtained by Lakhina et al. using the PCA subspace methodreported after every timestep or block of timesteps. When we
anomaly detection. ran OCNM on the firstt000 data points only, it flagged the
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