
This paper is included in the Proceedings of the
14th USENIX Symposium on Operating Systems

Design and Implementation
November 4–6, 2020

978-1-939133-19-9

Open access to the Proceedings of the
14th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX

Assise: Performance and Availability via
Client-local NVM in a Distributed File System

Thomas E. Anderson, University of Washington; Marco Canini, KAUST; Jongyul
Kim, KAIST; Dejan Kostić, KTH Royal Institute of Technology; Youngjin Kwon, KAIST;
Simon Peter, The University of Texas at Austin; Waleed Reda, KTH Royal Institute

of Technology and Université catholique de Louvain; Henry N. Schuh, University of
Washington; Emmett Witchel, The University of Texas at Austin

https://www.usenix.org/conference/osdi20/presentation/anderson

Assise: Performance and Availability via Client-local NVM in a Distributed File System

Thomas E. Anderson1 Marco Canini2 Jongyul Kim3† Dejan Kostić4 Youngjin Kwon3

Simon Peter5 Waleed Reda4,6? Henry N. Schuh1† Emmett Witchel5

1University of Washington 2KAUST 3KAIST 4KTH Royal Institute of Technology
5The University of Texas at Austin 6Université catholique de Louvain

Abstract
The adoption of low latency persistent memory modules
(PMMs) upends the long-established model of remote storage
for distributed file systems. Instead, by colocating computa-
tion with PMM storage, we can provide applications with
much higher IO performance, sub-second application failover,
and strong consistency. To demonstrate this, we built the As-
sise distributed file system, based on a persistent, replicated
coherence protocol that manages client-local PMM as a lin-
earizable and crash-recoverable cache between applications
and slower (and possibly remote) storage. Assise maximizes
locality for all file IO by carrying out IO on process-local,
socket-local, and client-local PMM whenever possible. Assise
minimizes coherence overhead by maintaining consistency at
IO operation granularity, rather than at fixed block sizes.

We compare Assise to Ceph/BlueStore, NFS, and Octopus
on a cluster with Intel Optane DC PMMs and SSDs for com-
mon cloud applications and benchmarks, such as LevelDB,
Postfix, and FileBench. We find that Assise improves write
latency up to 22⇥, throughput up to 56⇥, fail-over time up to
103⇥, and scales up to 6⇥ better than its counterparts, while
providing stronger consistency semantics.

1 Introduction
Byte-addressable non-volatile memory (NVM), such as Intel’s
Optane DC persistent memory module (PMM) [14], is now
commercially available as main memory. NVM provides high-
capacity persistent memory with near-DRAM performance at
lower cost. The promise of NVM as a low-cost main memory
add-on is driving the adoption of node-local NVM at scale [43,
86, 87]. Remote direct memory access (RDMA) allows NVM
access across the network without CPU overhead, raising
interest in NVM for high-performance distributed storage.

A common paradigm in distributed file systems, like Ama-
zon EFS [2], NFS [39], Ceph [82], Colossus/GFS [37], and
NVM re-designs, like Octopus [58] and Orion [85], is to sep-
arate storage servers from clients. In this server-client design,
files are stored by servers on machines physically separated
from clients running applications. Client main memory is
treated as a volatile block cache managed by the client’s OS

?Lead student author.
†Co-student authors.

kernel. This design simplifies resource pooling by physically
separating application from storage concerns with simple,
server-managed data consistency mechanisms.

This simplicity comes at a cost, which becomes apparent
as we move from SSD/HDD to NVM storage. In steady state,
application performance is limited by the overhead to ac-
cess kernel-level client caches. Upon a cache miss, multiple
network round trips are needed to consult remote metadata
servers and to fetch the actual data. On failure, client-server
file systems must rebuild caches of failed clients from scratch,
involving long fail-over times to re-establish application-level
service and necessitating high network utilization during re-
covery. Third, managing client caches at fixed page-block
granularity amplifies the small IO operations typical of many
distributed applications and increases cache coherence over-
head when IO is larger than the block size. These costs prevent
NVM from reaching its performance potential and have led
some within the storage community to advocate for a com-
plete redesign of the file system API [54, 72, 73, 88].

We present Assise, a distributed file system designed to
maximize the use of client-local NVM without requiring a
new API for high performance. Assise unleashes the per-
formance of NVM via pervasive and persistent caching in
process-local, socket-local, and node-local NVM. Assise ac-
celerates POSIX file IO by orders of magnitude by leveraging
client-local NVM without kernel involvement, block amplifi-
cation, or unnecessary coherence overheads. Assise provides
near-instantaneous application fail-over onto a hot replica that
mirrors an application’s local file system cache in the replica’s
local NVM. Assise reduces node recovery time by orders of
magnitude by locally recovering NVM caches with strong
consistency semantics. Finally, Assise leverages cluster-wide
NVM via warm replicas that provide lower latency reads than
slower storage media, such as SSDs. In cascaded hot replica
failure scenarios, warm replicas can become hot replicas to
preserve near-instantaneous fail-over.

To enable these properties, we design and build to our
knowledge the first crash consistent distributed file system
cache coherence layer for replicated NVM (CC-NVM). CC-
NVM serves cached file system state in Assise with strong
consistency guarantees and locality. CC-NVM provides pre-
fix crash consistency [80] by enforcing write order to local

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1011

NVM via logging and to cross-socket and remote NVM by
leveraging the write order of DMA and RDMA, respectively.
CC-NVM provides linearizability for all IO operations via
leases [38] that can be delegated among nodes, sockets, and
processes for local management of file system state. CC-NVM
consistently chain-replicates [77] all file system updates to a
configurable set of hot and warm replicas for availability.

Using CC-NVM, Assise achieves the following goals:
• Simple programming model. Assise supports unmodified

applications using the familiar POSIX API with strong
linearizability and crash consistency [80].

• Scalability. Unlike NVM-aware distributed file systems
that are limited to rack-scale [71, 85], Assise provides
strong consistency but remains scalable using dynamic
delegation of leases to nodes, sockets, and processes; local
sharing uses CC-NVM for consistency without network,
cross-socket, or kernel communication.

• Low IO tail latency. To efficiently support applications
with low tail latency requirements, Assise allows kernel-
bypass access to authorized local and remote NVM areas.
To reduce write latency with replicated persistence, Assise
provides an optimistic mode using asynchronous chain
replication with prefix crash consistency.

• High availability. Assise provides near-instantaneous fail-
over to a configurable number of replicas and minimizes
the time to restore the replication factor after failure.

• Efficient bandwidth use. The high bandwidth provided by
NVM means that communication can be a throughput bot-
tleneck (cf. Table 1). Assise minimizes communication by
eliminating redundant writes [52] and reducing coherence
protocol overhead via logging.

We make the following contributions:
• We present the design (§3) and implementation (§4) of

Assise, a distributed file system that fully utilizes NVM by
persistent caching in client-local NVM as a primary design
principle. Assise uses client-local NVM to recover the file
system cache for fast fail-over and locally synchronizes
reads and writes to file system state.

• We present CC-NVM (§3.3), the first persistent and avail-
able distributed cache coherence layer. CC-NVM provides
locality for data and metadata access, replicates for avail-
ability, and provides linearizability and prefix crash consis-
tency for all file system IO.

• We quantify the performance benefits of using local NVM
versus remote NVM for distributed file systems (§5). We
compare Assise’s steady-state and fail-over behavior to
RDMA-accelerated versions of Ceph with BlueStore [21]
and NFS, as well as Octopus [58], a distributed file sys-
tem designed for RDMA and NVM, using common cloud
applications and benchmarks, such as LevelDB, Postfix,
MinuteSort, and FileBench.

Our evaluation shows that Assise provides up to 22⇥ lower
write latency and up to 56⇥ higher throughput than NFS and
Ceph/BlueStore. Assise outperforms Octopus by up to an

Memory R/W Latency Seq. R/W GB/s $/GB
DDR4 DRAM 82 ns 107 / 80 9.77 [19]
NVM (local) 175 / 94 ns 32 / 11.2 3.83 [20]
NVM-NUMA 230 ns 4.8 / 7.4 -
NVM-kernel 0.6 / 1 µs - -
NVM-RDMA 3 / 8 µs 3.8 -
SSD (local) 10 µs 2.4 / 2.0 0.32 [15]

Table 1: Memory & storage price/performance (October 2020).

order of magnitude. Assise scales better than Ceph, providing
6⇥ throughput for Postfix with 48 processes over 3 nodes.
Assise is more available than Ceph, returning a recovering
LevelDB store to full performance up to 103⇥ faster. Demon-
strating that strong consistency with the familiar POSIX API
and high performance are not mutually exclusive, Assise fin-
ishes a local external sort 3% faster than a hand-tuned im-
plementation using processor loads and stores to memory
mapped NVM. Finally, Assise finishes the MinuteSort dis-
tributed sorting benchmark up to 2.2⇥ faster than a parallel
NFS installation.

Assise supports networked access to remote storage where
it makes sense. Assise can automatically migrate cold data
that does not fit in NVM to slower, network-attached stor-
age devices, such as SSDs and HDDs. To do so, Assise’s
implementation builds on Strata [52] as its node-local store.

2 Background
Distributed applications have diverse workloads, with IO gran-
ularities large and small [56], different sharding patterns,
and consistency requirements. All demand high availabil-
ity and scalability. Supporting these properties simultane-
ously has been the focus of decades of distributed storage
research [23, 39, 41, 58, 81, 82, 85]. Before NVM, trade-offs
had to be made. For example, by favoring large transfers
ahead of small IO, or steady-state performance ahead of crash
consistency and fast recovery, leading to the common idiom
of remote-storage file system design. We argue that with the
arrival of fast NVM, these trade-offs need to be re-evaluated.

The opportunity posed by NVM is two-fold:
Cost/performance. Table 1 shows measured access latency,
bandwidth, and cost for modern server memory and storage
technologies, including Optane DC PMM (measurement de-
tails in §5). We can see that local NVM access latency and
bandwidth are close to DRAM, up to two orders of magnitude
better than SSD. At the same time, NVM’s per-GB cost is
only 39% that of DRAM. NVM’s unique characteristics allow
it to be used as the top layer in the storage hierarchy, as well
as the bottom layer in a server’s memory hierarchy.
Fast recovery. Persistent local storage with near-DRAM
performance can provide a recoverable cache for hot file
system data that can persist across reboots. The vast majority
of system failures are due to software crashes that simply
require rebooting [25, 36, 40]. Caching hot file system data in
NVM allows for quick recovery from these common failures.

For these reasons, data center operators are deploying NVM

1012 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

at scale [43, 86, 87]. However, to fully realize its potential,
we have to efficiently use local NVM. NVM accessed via
RDMA (NVM-RDMA), via loads and stores to another CPU
socket (NVM-NUMA), or via the kernel on the same socket
(NVM-kernel) can be an order of magnitude slower in terms
of latency and bandwidth.

2.1 Related Work

We survey the existing work in distributed storage and high-
light why it cannot fully utilize the storage system perfor-
mance offered by local NVM.
Block and object stores, such as Amazon’s EBS [1], S3 [3],
and Ursa [56], provide a new API to a multi-layer storage
hierarchy that can provide cheap, fault-tolerant access to vast
amounts of data. However, block stores have a minimum IO
granularity (16KB for EBS) and IO smaller than the block size
suffers performance degradation from write amplification [56,
69]. For this reason, Dropbox uses Amazon S3 for data blocks,
but keeps small metadata in DRAM for fast access, backed by
an SSD [62]. Apache Crail [4] and Blizzard [63] provide file
system APIs on top of block stores, but both focus on parallel
throughput of large data streams, rather than small IO.

To realize the performance benefits of NVM for all IO,
we need to abandon fixed block sizes and instead persist and
track IO at its original operation granularity. Hence, Assise
leverages logging to persist writes at their original granularity
in NVM. A similar model is realized in the RAMcloud [66]
key-value store. RAMcloud maintains data in DRAM for per-
formance, using SSDs for asynchronous persistence. However,
the capacity limits of DRAM mean that many RAMcloud op-
erations still involve the network, and because DRAM state
cannot be recovered after a crash, it is vulnerable to cascad-
ing node failures. Even after single node failures, state must
be restored from remote nodes and RAMcloud requires a
full-bisection bandwidth network for fast recovery. Assise
leverages local NVM for recovery and does not require full-
bisection bandwidth or asynchronous backup storage.
Client-server file systems, like Ceph [82], use distributed
hashing over nodes to provide scalable file service for cloud
applications. However, network and system call latency harms
file IO latency, as shown in Table 1. Typical network access
bandwidth to NVM is similarly surpassed by the higher band-
width of local NVM.

To combat network overheads, several file systems have
been built [58, 85] or retrofitted [13, 39, 44] to use RDMA.
Octopus [58] and Orion [85] are redesigns that use RDMA
for high performance access to NVM. Still, neither leverages
kernel-bypass for low-latency IO (Octopus uses FUSE, Orion
runs in the kernel) and both pool storage remotely. Like Ceph,
Octopus uses distributed hashing to place files on nodes (Oc-
topus does not replicate). Orion can store data locally via
“internal clients,” but uses a metadata server. Clover [76] is
a key-value store that takes the opposite approach, locating
metadata with applications, but storing data remotely. All

Concept Explanation
LibFS Per-process, user-level file system library
SharedFS Per-socket system daemon; manages local leases
CC-NVM Crash-consistent cache coherence with linearizability
Hot replica Cache-hot replica for fast failover
Warm replica Provides NVM for low-latency, remote, warm reads
Cluster manager Fault-tolerant service for membership & leases

Table 2: Concepts used in Assise.

systems perform remote operations in the common case to
update data and/or metadata, increasing IO latency.

Network latency and limited bandwidth increase operation
latency, reduce throughput, and limit scalability. For example,
due to update contention at a central metadata server, Orion
scales only to a small number of clients. Orion omits an
evaluation of server fail-over and recovery (Assise’s is in
§5.4). Tachyon [55] aims to circumvent replication overhead
by leveraging the concept of lineage, where lost output is
recovered by re-executing application code that created the
output. However, to do so, Tachyon requires applications to
use a complex data lineage tracking API.

To maximize NVM utility, we need to design for a scenario
where kernel and networking overheads are high compared to
storage access. Hence, Assise eliminates kernel overhead for
local IO operations and remote IO incurs a single operation
to the nearest replica in the common case, without requiring
dedicated metadata servers or a distributed hash to balance
load. For scalability, we need to enforce data and metadata
consistency locally, which CC-NVM tackles with the help of
leases. Unlike Tachyon, Assise supports the classic POSIX
file API and is fully compatible with existing applications.
Leases [38, 57] have long been integral to performance in
distributed file systems, by allowing local operations to leased
portions of the file system name space, with linearizability.
Read-only leases are a common design pattern [12,27,39,42],
but some research systems have explored using both read
and write leases in a similar manner to Assise. A prominent
example is Berkeley xFS [23], which maintained a local block-
level update log at each node, written as a software RAID 5/6
partitioned across other nodes. Assise differs from xFS by
using an operational log, replicating rather than striping the
log, and by doing update coalescing.

2.2 Remote Storage versus Local NVM

Figure 1 contrasts the IO architecture of traditional client-
server file systems and Assise. Each subfigure shows two
dual-socket nodes executing a number of application pro-
cesses sharing a distributed file system. Both designs use a
replicated cluster manager for membership management and
failure detection, but they diverge in all other respects.

Traditional distributed file systems first partition available
cluster nodes into clients and servers. Clients cache file sys-
tem state in a volatile kernel buffer cache that is shared by
processors across sockets (NVM-NUMA) and accessed via
expensive system calls (NVM-kernel). Persistent file system
state is stored in NVM on remote servers. For persistence and

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1013

Client 0

(Volatile) Kernel buffer cache

NUMA 0 NUMA 1
proc proc … proc proc …

… Client N

(Volatile) Kernel buffer cache

NUMA 0 NUMA 1
proc proc … proc proc …

Data servers Metadata serversCluster manager

(a) Traditional distributed FSes with server-side storage (NFS, Ceph, . . .).

Client 0
NUMA 0 NUMA 1

… …

… Client N
NUMA 0 NUMA 1

… …

Cluster manager

SharedFS

proc
LibFS

proc
LibFS

SharedFS

proc
LibFS

proc
LibFS

SharedFS

proc
LibFS

proc
LibFS

SharedFS

proc
LibFS

proc
LibFS

(b) Client-local NVM (Assise).

Figure 1: Distributed file system IO architectures. Arrow = RPC/system call. Cylinder = persistence. Black = hot replica.

consistency, clients thus have to coordinate updates with repli-
cated storage and metadata servers via the network (NVM-
RDMA) with higher latency than local NVM. The cluster
manager is not involved in IO. Data is typically distributed
at random over replicated storage servers for simplicity and
load balance [82]. The overhead of updating a large set of
storage nodes atomically means that (crash) consistency is
often provided only for metadata, which is centralized.

3 Assise Design
Assise avoids remote storage servers and instead uses CC-
NVM to coordinate linearizable state among processes. Pro-
cesses access cached file system state in local NVM directly
via a library file system (LibFS), which may be replicated for
fail-over (two LibFS hot replicas shown in black in Figure 1).
CC-NVM coordinates LibFSes hierarchically via per-socket
daemons (SharedFS) and the cluster manager. Table 2 ex-
plains several Assise-related concepts.
Crash consistency modes. Assise supports two crash con-
sistency modes: optimistic or pessimistic [30]. Mount op-
tions specify the chosen crash consistency mode. When pes-
simistic, fsync forces immediate, synchronous replication
and all writes prior to an fsync persist across failures. When
optimistic, Assise commits all operations in order, but it is
free to delay replication until the application forces it with
a dsync call [30]. Optimistic mode provides lower latency
persistence with higher throughput, but risks data loss after
crashes that cannot recover locally (§3.4). In either mode, As-
sise guarantees a prefix crash-consistent file system [80]—all
recoverable writes are in order and no parts of a prefix of the
write history are missing.

We now describe cluster coordination and membership
management in Assise (§3.1). We then detail the IO paths
(§3.2) and show how CC-NVM interacts with them to provide
linearizability and prefix crash consistency (§3.3). Finally, we
describe recovery (§3.4) and warm replicas (§3.5). We close
with a discussion of connected design questions (§3.6).

3.1 Cluster Coordination and Failure Detection
Like other distributed file systems, Assise leverages a repli-
cated cluster manager for storing the cluster configuration
and detecting node failures. Assise uses the ZooKeeper [10]
distributed coordination service as its cluster manager.
Cluster coordination. Each SharedFS in Assise registers
with the cluster manager. In our prototype, the system admin-

istrator decides which SharedFS replicates which parts of the
cached file system namespace and the caching policy (hot
or warm replica) for arbitrary subtrees; the cluster manager
records this mapping. When a subtree is first accessed, LibF-
Ses contact their local SharedFS, which consults the cluster
configuration and sets up an RDMA replication chain from
LibFS through the subtree’s hot replicas. For each chain, hot
replicas preallocate a configurable amount of NVM for repli-
cation (sensitivity evaluated in §5.2). It is future work to
implement a distributed replica discovery service (e.g., using
CC-NVM). LibFSes on any node are already able to cache
any (meta-)data with linearizability.
Failure detection. The cluster manager sends heartbeat mes-
sages to each active SharedFS once every second. If no re-
sponse is received after a timeout, the node is marked failed
and all connected SharedFS are notified. When the node
comes back online, it contacts the cluster manager and initi-
ates recovery (§3.4).

3.2 IO Paths
Application IO interacts first with Assise caches. To keep tail
latency low, Assise does not use a shared kernel buffer cache.
Instead, LibFS caches file system state first in process-local
memory. The LibFS cache uses both NVM and DRAM. NVM
stores updates, while DRAM caches reads. LibFS implements
the POSIX API at user-level. We now discuss cache operation
upon IO, including replication, eviction, and access permis-
sions. Figure 2 shows these mechanisms for two hot replicas
and one warm replica, using SSDs for cold storage. Cache
coherence is discussed in §3.3.

3.2.1 Write Path
Writes in Assise involve three mechanisms that operate on
different time scales:
1. To allow for persistence with low latency, LibFS directly

writes into a process-local cache in NVM (W). To effi-
ciently support writes of any granularity, the write cache
is an update log, rather than a block cache.

2. To outlive node failures, the update log is chain-replicated,
with kernel-bypass, by LibFS (S1 , S2).

3. When update logs fill beyond a threshold, evictions are
initiated (E2), moving their contents to SharedFS. We
describe replication and eviction next.

Replication and crash consistency. When pessimistic,
fsync forces immediate, synchronous replication. The caller

1014 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Hot Replica

NVM

DRAM

SSD

Warm Replica

NVM

SSD

NVM

LibFS SharedFS

Log

A
pp

lic
at

io
n

R4

R2

R1

R3

E2

E3

E1

W
Hot

Warm

Hot

Cold

Hot Replica

NVM

SSD

Hot

Warm

Cold S1

S2

Log
Log

Read Cache

Warm

Cold
E2

E2

E3

E3

Figure 2: Assise IO paths. Dashed line = RDMA operation, solid
line = local operation. Shaded areas are per process.

is blocked until all writes up to the fsync have been repli-
cated. Thus, all writes prior to an fsync outlive node failures.

When optimistic, Assise is free to delay replication. This
provides Assise with an opportunity to coalesce [52] tempo-
rary durable writes (i.e., overwritten or deleted files), a work-
load pattern seen in application-level commit protocols [67].
Eliminating these writes allows Assise to conserve network
bandwidth. In optimistic mode, Assise initiates replication on
dsync or upon log eviction.

In both cases, the local update log contents are written to
preallocated NVM on the first replica along the replication
chain via RDMA (S1). The replica continues chain replica-
tion to the next replica (S2), and so on. The final replica in
the chain sends an acknowledgment back along the chain to
indicate that the chain completed successfully.
Cache eviction. When a LibFS update log fills, it replicates
any unreplicated writes and initiates eviction. Eviction is done
in least-recently-used (LRU) fashion through the SharedFS
shared caches to cold storage (E2 , E3). Hot replicas keep
hot data in NVM, while moving warm and cold data to cold
storage. Warm replicas (§3.5) keep hot and cold data in cold
storage, while warm data resides in NVM to accelerate warm
reads (§3.5). Cold storage may be remote (e.g., via NVMe-
over-Fabrics [17]). Each replica along the chain evicts in
parallel and acknowledges when eviction is finished. This
ensures that all replicas cache identical state for fast failover.

For log eviction (E2), issuing direct stores to NVM shared
caches on another socket has overhead due to cross-socket
hardware cache coherence, limiting throughput [83]. Since
CC-NVM provides cache coherence, Assise can bypass hard-
ware cache coherence by using DMA [53] when evicting to
NVM-NUMA. This yields up to 30% improvement in cross-
socket file system write throughput (§5.5).

3.2.2 Read Path

LRU cache eviction guarantees that the latest version of all
data is always available in the fastest cache. Thus, upon a read,
LibFS (1) checks the process-private write and read caches
(via a log hashtable and read cache, shown in Figure 2) for
the requested data (R1). If not found, LibFS (2) checks the
node-local hot SharedFS cache (R2) (via an extent tree used
to index the SharedFS cache [52]). If the data was found in
either of these areas, it is read locally. If not found, LibFS (3)

checks the warm replica’s SharedFS cache (R3), if it exists,
and, in parallel, checks cold storage (R4).
Read cache management. Recently read data is cached
in process-local DRAM, except if it was read from local
NVM, where DRAM caching does not provide benefit. LibFS
prefetches up to 256KB from cold storage and up to 4KB from
remote NVM. For remote NVM reads, LibFS first fetches the
requested data and then prefetches the remainder. This mini-
mizes small read latency while improving the performance of
workloads with spatial locality. Data from remote NVM and
cold storage is evicted from the read cache to the process-local
update log (E1).

3.2.3 Permissions and Kernel Bypass

Assise assumes a single administrative domain with UNIX file
and directory ownership and permissions. SharedFS enforces
that LibFS may access only authorized data, by checking
permissions and metadata integrity upon cache eviction and
enforcing permissions on reads. To minimize latency of node-
local SharedFS cache reads, Assise allows read-only mapping
of authorized parts of the SharedFS cache into the LibFS
address space. LibFS caches and mappings are invalidated
when files or directories are closed and whenever the update
log is evicted.

The metadata integrity of the file system is ensured by
SharedFS. LibFS operations do not prevent one thread from
corrupting another’s data in the process-local update log, but
SharedFS verifies that all metadata operations are valid before
they become visible to other processes. This implies that
processes can corrupt their own data in their private update
log, even after it was written (memory protection keys can
mitigate inter-thread data corruption [34]). However, only
process-local writes go to the process-local update logs. Multi-
process access to any filesystem object (including a subtree)
is linearizable and access-controlled via leases. Processes
cannot corrupt shared file system (meta-)data.

3.3 Crash Consistent Cache Coherence with CC-NVM

CC-NVM provides distributed cache coherence with lineariz-
ability when sharing file system state among processes; it
provides prefix semantics upon a crash.
Prefix crash consistency. To provide prefix crash consis-
tency, CC-NVM tracks write order via the update log in
process-local NVM. Each POSIX call that updates state is
recorded, in order, in the update log. When chain-replicating,
CC-NVM leverages the write ordering guarantees of (R)DMA
to write the log in order to replicas. In optimistic mode, CC-
NVM wraps coalesced file system operations in a Strata trans-
action [52]. This ensures that file system updates are persisted
and replicated atomically and that a prefix of the write history
can be recovered (§3.4).
Sharing with linearizability. CC-NVM serializes concur-
rent access to shared state by multiple processes and recovers
the same serialization after a crash via leases [38]. Leases

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1015

provide a simple, fault-tolerant mechanism to delegate access.
Leases function similarly to reader-writer locks, but can be
revoked (to allow another process access) and expire after a
timeout (after which they may be reacquired). In CC-NVM,
leases are used to grant shared read or exclusive write access
to a set of files and directories—multiple read leases to the
same set may be concurrently valid, but write leases are exclu-
sive. Reader/writer semantics efficiently support shared files
and directories that are read-mostly and widely used, but also
write-intensive files and directories that are not frequently
shared. CC-NVM also supports a subtree lease that includes
all files and directories at or below a particular directory. A
subtree lease holder controls access to files and directories
within that subtree. For example, a LibFS with an exclusive
subtree lease on /tmp/bwl-ssh/ can recursively create and
modify files and directories within this subtree.

Leases must be acquired by LibFS from SharedFS via a
system call before LibFS can cache the data covered by the
lease. Assise does this upon first IO; leases are kept until
they are revoked by SharedFS. This occurs when another
LibFS wishes access to a leased file or when a LibFS instance
crashes or the lease times out. Lease revocation latency is
bounded by a grace period, within which the current lease
holder can finish its ongoing IO before releasing contended
leases. If LibFS fails to surrender the lease after the grace
period, the lease is revoked by SharedFS and any subsequent
IO on the leased file is rejected as invalid. SharedFS enforces
that the lease holder’s read and write caches are cleaned and
evicted of the covered data before the lease is transferred. The
time taken to do so is bounded by the holder’s update log size.
SharedFS logs and replicates each lease transfer in NVM for
crash consistency. A LibFS may overlap IO with SharedFS
lease replication until fsync/dsync.
Hierarchical coherence. To localize coherence enforcement,
leases are delegated hierarchically. The cluster manager is
at the root of the delegation tree, with SharedFSes as chil-
dren, and LibFSes as leaves (cf. Figure 1b). LibFSes request
leases first from their local SharedFS. If the local SharedFS
is not the lease holder, it consults the cluster manager. If
there is no current lease holder, the cluster manager assigns
the lease to the requesting SharedFS, which delegates it to
the requesting LibFS and becomes its lease manager. If a
lease manager already exists, SharedFS forwards the request
to the manager and caches the lease manager’s information
(leased namespace and expiration time of lease). The cluster
manager expires lease management from SharedFSes every 5
seconds. This allows CC-NVM to migrate lease management
to the local SharedFS, while preventing leases from changing
managers too quickly, facilitating scalability.

Hierarchical coherence minimizes network communication
and thus lease delegation overhead. LibFSes on the same
node or socket require only local SharedFS delegation in the
common case. This structure maps well to the data sharding
patterns of many distributed applications (§5.5).

3.4 Fail-over and Recovery

Assise caches file system state with persistence in local NVM,
which it can use for fast recovery. Assise optimizes recovery
performance for the most common crash types.
LibFS recovery. An application process crashing is the most
common failure scenario. In this case, the local SharedFS sim-
ply evicts the dead LibFS update log, recovering all completed
writes (even in optimistic mode) and then expires its leases.
Log-based eviction is idempotent [52], ensuring consistency
in the face of a system crash during eviction. The crashed
process can be restarted on the local node and immediately re-
use all file system state. The LibFS DRAM read-only cache
has to be rebuilt, with minimal performance impact (§5.4).
SharedFS recovery. Another common failure mode is a
reboot due to an OS crash. In this case, we can use NVM to
dramatically accelerate OS reboot by storing a checkpoint of
a freshly booted OS. After boot, Assise can initiate recovery
for all previously running LibFS instances, by examining the
SharedFS log stored in NVM.
Cache replica fail-over. To avoid waiting for node recovery
after a power failure or hardware problem, we immediately
fail-over to a hot replica. The replica’s SharedFS takes over
lease management from the failed node, using the replicated
SharedFS log to re-grant leases to any application replicas.
The new instances will see all IO that preceded the most
recently completed fsync/dsync.

Writes to the file system can invalidate cached data of the
failed node during its downtime. To track writes, the cluster
manager maintains an epoch number, which it increments
on node failure and recovery. All SharedFS instances are
notified of epoch updates. All SharedFS instances share a
per-epoch bitmap in a sparse file indicating what inodes have
been written during each epoch. The bitmaps are deleted at
the end of an epoch when all nodes have recovered.
Node recovery. When a node crashes, the cluster manager
makes sure that all of the node’s leases expire before the node
can rejoin. When rejoining, Assise initiates SharedFS recov-
ery. A recovering SharedFS contacts an online SharedFS to
collect relevant epoch bitmaps. SharedFS then invalidates ev-
ery block from every file that has been written since its crash.
This simple protocol could be optimized, for instance, by
tracking what blocks were written, or checksumming regions
of the file to allow a recovering SharedFS to preserve more of
its local data. But the table of files written during an epoch is
small and quickly updated during file system operation, and
our simple policy has been sufficient.

3.5 Warm Replicas

To fully exploit the memory hierarchy presented in Table 1,
remote NVM can be used as a third-level cache, below local
DRAM and local NVM. To do so, we introduce warm repli-
cas. Like hot replicas, warm replicas receive all file system
updates via chain-replication, but leverage a different update

1016 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

log eviction policy. Warm replicas track the LRU chain for
a specified portion of “warm data” beyond the LibFS and
SharedFS caches. Warm replicas do not impact the latency of
replicated writes, but they reduce read latency for warm data
by serving these reads from NVM, rather than cold storage.

LibFSes can read from warm replicas via RDMA with
lower latency and higher bandwidth than cold storage (NVM-
RDMA versus SSD in Table 1). Applications do not run on
warm replicas in the common case. In the rare case of a failure
cascade crashing all hot replicas, processes can fail-over to
warm replicas, albeit with reduced short-term performance.
After fail-over, warm replicas become hot replicas and hot
data must be migrated back into local NVM.

3.6 Discussion

Assise may be deployed at scale. The use of local NVM
together with hierarchical lease delegation aligns well with
datacenter server, rack, and pod architecture [22]. We discuss
factors of Assise’s design that impact such a deployment.
In particular, the memory overhead of per-process and per-
replica update logs, the use of NVM and RDMA at scale, and
security.
Update log scalability. Assise uses per-process and per-
replica update logs for efficient chain-replication with kernel-
bypass. These update logs are preallocated on process cre-
ation in our prototype. While update logs can support high
performance at moderate size (§5.2), a deployment at scale
might be concerned with the memory consumption of update
logs. In this case, the per-process and per-replica update log
size can be adapted dynamically to momentarily available
NVM capacity and per-process IO demand. SharedFS can
resize logs upon eviction. The most significant overhead for
log resizing is memory registration for RDMA. It requires
pinning the memory and mapping it in the RDMA NICs. This
operation can be overlapped with the log eviction itself. To
help reduce the need for frequent resizing, logs can be re-
sized multiplicatively, similar to resizing approaches in prior
work [84].
RDMA scalability. Assise uses RDMA reliable connec-
tions (RCs) for each process and replica. RCs require the
NIC to create and maintain connection state. For larger clus-
ters, maintaining a large number of connections can stress
the NIC’s limited memory and degrade performance. Sev-
eral proposals have been made to reduce NIC cache thrash-
ing [29, 68] and Mellanox introduced dynamically-connected
(DC) transports [70], which allows connection-sharing and
enables a high degree of scalability. Assise can leverage these
approaches to scale the use of RDMA.
NVM wear-out. Assise uses local NVM extensively. This
use can lead to the wear-out of NVM. To prevent frequent
NVM replacement at scale, it is important to minimize writes
to the NVM media. Assise’s update logs minimize write
amplification, but update log eviction in causes a 2⇥ write
amplification in the worst case. This write amplification can

be partially eliminated via coalescing as seen in workloads,
like Varmail (§5.3). To further reduce write amplification,
update log pages may be remapped to the SharedFS shared
cache, without introducing any additional writes [48]. We
leave this as future work.
Security. In a large-scale public cloud scenario, data from
each tenant is usually encrypted for security. For this pur-
pose, both NVM and RDMA support encryption of data at
rest and in-flight. Intel’s Optane DC PMMs support transpar-
ent hardware encryption of data stored in NVM and modern
RDMA NICs [61] support transparent encryption of RDMA
operations.

4 Implementation
Assise uses libpmem [11] for persisting data on NVM and
libibverbs for RDMA operations in userspace. Assise inter-
cepts POSIX file system calls and invokes the corresponding
LibFS implementation of these functions in userspace [8].
The Assise implementation consists of 28,982 lines of C code
(LoC), with LibFS and SharedFS using 16,515 and 6,563 LoC,
respectively. The remaining 5,904 LoC contain utility code,
such as hash tables and linked lists. SharedFS communicates
with LibFSes via shared memory [24]. Assise uses Strata
code (LoC not counted) for cold storage in SSD and HDD.

Assise uses Intel Optane DC PMM in App-Direct mode.
App-Direct exposes NVM as a range of physical memory. It
is the most efficient way to access NVM, but it requires OS
support. OS-transparent modes have weaker persistence or
performance properties [45]. For example, memory mode inte-
grates NVM as volatile memory, using DRAM as a hardware-
managed level 4 cache. Sector mode exposes NVM as a disk,
with attendant IO amplification and disk driver overheads.

4.1 Strata as a Building Block

Assise builds upon Strata’s local file system functionality and
augments it with the CC-NVM cache coherence layer and
RDMA to create a replicated and highly efficient distributed
file system with prefix crash conistency. Assise inherits sev-
eral components from Strata, including its use of extent trees
to index storage managed by SharedFS (in turn based on
Ext4 [60]), the LibFS update log, and log coalescing. We en-
hance Strata’s extent trees to manage directories and Strata’s
leases to support delegation.

4.2 Efficient Network IO with RDMA

Assise makes efficient use of RDMA. For lossless, in-order
data transfer among nodes, Assise uses RDMA reliable con-
nections (RCs). RCs have low header overhead, improving
throughput for small IO [49, 59]. RCs also provide access to
one-sided verbs that bypass CPUs on the receiver side, reduc-
ing message transfer times [35, 64] and memory copies [74].
Log replication. Logs are naturally suited for one-sided
RDMA operations. Replication typically requires only one
RDMA write, reducing header and DMA overheads [59]. As-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1017

sise uses RDMA write-with-immediate for log replication.
This operation performs a write and also notifies the remote
replica to forward the data to the next replica in the chain.
The only exceptions are when the remote log wraps around
or when the local log is fragmented (due to coalescing), such
that it exceeds the NIC’s limit for scatter-gather DMA.
Persistent RDMA writes. The RDMA specification does
not define the persistence properties of remote NVM writes
via RDMA. In practice, the remote CPU is required to flush
any RDMA writes from its cache to NVM. Assise flushes
all writes via the CLWB and SFENCE instructions on each
replica, before acknowledging successful replication. In the
future, it is likely that enhancements to PCIe will allow
RDMA NICs to bypass the processor cache and write directly
to NVM to provide persistence without CPU support [50].
Remote NVM reads. Assise reads remote data via RPC.
To keep the request sizes small, Assise identifies files using
their inode numbers instead of their path. As an optimization,
DRAM read cache locations are pre-registered with the NIC.
This allows the remote node to reply to a read RPC by RDMA
writing the data directly to the requester’s cache, obviating
the need for an additional data copy.

5 Evaluation
We evaluate Assise’s common-case as well as its recovery per-
formance, and break down the performance benefits attained
by each system component. We compare Assise to three
state-of-the-art distributed file systems that support NVM
and RDMA. Our experiments rely on several microbench-
marks and Filebench [75] profiles, in addition to several real
applications, such as LevelDB, Postfix, and MinuteSort. Our
evaluation answers the following questions:
• IO latency and throughput breakdown (§5.2). What is

the hardware IO performance of a storage hierarchy with
local NVM (Table 1)? How close to this performance do
the file systems operate under various IO patterns? What
are the sources of overhead?

• Cloud application performance (§5.3). What is the per-
formance of cloud applications with various consistency,
latency, throughput, and scalability requirements? What
is the overhead of Assise’s POSIX API implementation
versus hand-tuned, direct use of local NVM? By how much
can a warm replica improve read latency? By how much
can optimistic crash consistency improve write throughput
for real applications?

• Availability (§5.4). How quickly can applications recover
from various failure scenarios?

• Scalability (§5.5). How well does Assise perform when
multiple processes share the file system? By how much
can Assise’s hierarchical coherence improve multi-process,
multi-socket, and multi-node scalability?

Testbed. Our experimental testbed consists of 5⇥ dual-socket
Intel Cascade Lake-SP servers running at 2.2GHz, with a total
of 48 cores (96 hyperthreads), 384GB DDR4-2666 DRAM,

Feature Assise Ceph NFS Octopus Orion
Cache recovery X
Local consistency X
Kernel-bypass X
Linearizability X X
Data crash consistency X X
Byte-oriented X X X
Replication X X X
RDMA X X X X X

Table 3: Features of the evaluated distributed file systems.

6TB Intel Optane DC PMM, 375GB Intel Optane DC P4800X
series NVMe-SSD, and a 40GbE ConnectX-3 Mellanox In-
finiBand NIC, connected via an InfiniBand switch. Exploiting
all 6 memory channels per processor, there are 6 DIMMs of
DRAM and NVM per socket. NVM is used in App-Direct
mode (§4). All nodes run Fedora 27 with Linux kernel version
4.18.19.
Hardware performance. We first measure the achievable IO
latency and throughput for each memory layer in our testbed
server. We do this by using sequential IO and as many cores of
a single socket as necessary. We measure DRAM and NVM
(App-Direct) latency and throughput using Intel’s memory
latency checker [5]. NVM-RDMA performance is measured
using RDMA read and write-with-immediate (to flush remote
processor caches) operations to remote NVM. SSD perfor-
mance is measured using /dev/nvme device files. The IO
sizes that yielded maximum performance are 64B for DRAM,
256B for NVM, and 4KB for SSD. Table 1 shows these re-
sults. The measured IO performance for DRAM, NVM, and
SSD matches the hardware specifications of the correspond-
ing devices and is confirmed by others [45]. NVM-RDMA
throughput matches the line rate of the NIC. NVM-RDMA
write latency has to invoke the remote CPU (to flush caches)
and is thus larger than read latency. We now investigate how
close to these limits each file system can operate.
State-of-the-art. Table 3 shows performance-relevant fea-
tures of the state-of-the-art and Assise. We can see that no
open-source distributed file system provides all of Assise’s
features. Hence, a direct performance comparison is difficult.
We perform comparisons against the Linux kernel-provided
NFS version 4 [39] and Ceph version 14.2.1 [82] with Blue-
Store [21], both retrofitted for RDMA, as well as Octopus [58].
We cannot directly compare with Orion [85] as it is not pub-
licly available, but we emulate its behavior where possible.
Only Ceph provides availability via replicated object storage
daemons (OSDs), delegating metadata management to a (po-
tentially sharded) metadata server (MDS). Octopus and NFS
do not support replication for availability and thus gain an
unfair performance advantage over Assise. However, Assise
beats them even while replicating for availability, showing
that both features can be had when leveraging local NVM.

Other file systems do not support persistent caches and their
consistency semantics are often weaker than Assise’s. Assise
provides data crash consistency, while both Ceph/BlueStore

1018 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

and Octopus provide only metadata crash consistency [31].
For NFS, crash consistency is determined by the underlying
file system. We use EXT4-DAX [9], which also provides
only metadata crash consistency. When sharing data, NFS
provides close-to-open consistency [39], while Octopus and
Ceph provide “stronger consistency than NFS” [28], and As-
sise provides linearizability, which is stronger than Octopus’
and Ceph’s guarantees. In all performance comparisons, As-
sise provides stronger consistency than the alternatives. Ceph
is the closest comparison point.
File system compliance tests. We tested Assise using xf-
stests [18] and CrashMonkey [65]. Assise passed all 75
generic xfstests that are recommended for NFS [16]. NFSv4.2
and Ceph v14.2.1 pass only 71 and 69 of these tests, respec-
tively. In part, this is due to their weaker consistency model.
Assise also successfully passes CrashMonkey tests, runs all
existing Filebench profiles, passes all unit tests for the Lev-
elDB key-value store, and passes MinuteSort validation.

5.1 Experimental Configuration

Machines. Each experiment specifies the number (� 2) of
testbed machines used. By default, machines are used as hot
replicas in Assise, as a pool of storage nodes in Octopus,
and as OSD and MDS replicas in Ceph. NFS uses only one
machine as server, the rest as clients. We place applications
on hot replicas for Assise, on OSD replicas for Ceph, on
storage nodes for Octopus, and on clients for NFS. Assise’s
and Ceph’s cluster managers run on 2 additional testbed ma-
chines (NFS and Octopus do not have cluster managers). The
colocated deployment of applications and OSDs for Ceph is
due to the small size of our cluster. It gives Ceph a potential
performance advantage over an all-remote OSD deployment.
Network. We use RDMA for the NFS client-server connec-
tion. Ceph provides its client-side file system via the Ceph
kernel driver and uses IP over InfiniBand, which was the
fastest configuration (we also tried FUSE and Accelio [13]).
Assise and Octopus use RDMA with kernel-bypass.
Storage and caches. For maximum efficiency, all file sys-
tems use NVM in App-Direct mode to provide persistence
(cylinders in Figure 1) and DRAM when persistence is not
needed (e.g., kernel buffer cache). We investigate Ceph and
NFS performance using NVM in memory mode for volatile
caches and find it to degrade throughput by up to 25% versus
DRAM. For efficient access to NVM, Ceph OSDs use Blue-
Store and NFS servers use EXT4-DAX. Octopus uses FUSE
to provide its file system interface to applications in direct IO
mode to NVM, bypassing the kernel buffer cache [6].

To evaluate a breadth of cache behaviors with limited appli-
cation data set sizes, we limit the fastest cache size for all file
systems to 3GB. For Ceph and NFS, we limit the kernel buffer
cache to 3GB. For Assise, we partition the LibFS cache into
a 1GB NVM update log and a 2GB DRAM read cache (the
SharedFS second-level cache may use all NVM available),
and we run Assise in pessimistic mode.

128 4K 64K 1M
0.1

1

10

100

1000

10000

IO Size (bytes)

La
te

nc
y

(u
s)

Assise Assise−3r NFS Ceph Octopus

(a) Sequential write. write latency is solid line, fsync is bar height.

HIT MISS RMT HIT MISS RMT HIT MISS RMT HIT MISS RMT
128 4K 64K 1M

0.1

1

10

100

1000

10000

IO Size (bytes)

La
te

nc
y

(u
s)

Assise NFS Ceph Octopus

(b) Read latencies for cache hits, misses, and remote (RMT) misses.

Figure 3: Avg. and 99%ile (error bar) IO latencies. Log scale.

5.2 Microbenchmarks

Average and tail write latency. We compare unladen syn-
chronous write latencies with 2 machines (except Assise-3r
which uses 3 machines). Synchronous writes involve write
calls (fixed-width font identifies POSIX calls) that operate
locally (except for Octopus where write may be remote),
and fsync calls that involve remote nodes for replication (As-
sise, Ceph) and/or persistence (Ceph, NFS). Each experiment
appends 1GB of data into a single file, and we report per-
operation latency. In this case, the file size is smaller than each
file system’s cache size, so no evictions occur—with giga-
bytes of cache capacity, this is common for latency-sensitive
write bursts.

Figure 3a shows the average and 99th percentile sequential
write latencies over various common IO sizes (random write
latencies are similar for all file systems). We break writes
down into write (solid line) and fsync call latencies (bar).
Octopus’ fsync is a no-op. Assise’s local write latencies
match that of Strata [52]. Assise’s average write latency for
128B two-node replicated writes is only 8% higher than the
aggregate latencies of the required local and NVM-RDMA
writes (cf. Table 1). Three replicas (Assise-3r) increase As-
sise’s overhead to 2.2⇥ due to chain-replication with sequen-
tial RPCs. The 99th percentile replicated write latency is up
to 2.1⇥ higher than the average for 2 replicas. This is due
to Optane PMM write tail-latencies [45]. The tail difference
diminishes to 19% for 3 replicas due to the higher average.

Ceph and NFS use the kernel buffer cache and interact at
4KB block granularity with servers. For small writes, the in-
curred network IO amplification during fsync is the main
reason for up to an order of magnitude higher aggregate write
latency than Assise. In this case, their write latency is up

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1019

to 3.2⇥ higher than Assise due to kernel crossings and copy
overheads. For large writes (� 64KB), network IO amplifica-
tion diminishes but the memory copy required to maintain the
kernel buffer cache becomes a major overhead. The latency of
large writes is higher than Assise’s replicated write latency
(and up to 2.7⇥ higher than Assise’s non-replicated write
latency), while aggregate write latency is up to 7.2⇥ higher
than Assise. Ceph has higher fsync latency than NFS due to
replication.

Octopus eliminates the kernel buffer cache and block ori-
entation, which improves its performance drastically versus
NFS and Ceph. However, Octopus still treats all NVM as re-
mote and uses FUSE for file IO. Octopus exhibits up to 2.1⇥
higher latency than Assise for small (< 64KB) writes. This
overhead stems from FUSE (around 10µs [78]) and writing to
remote NVM via the network. Large writes (� 64KB) amor-
tize Octopus’ write overheads. Assise has up to 1.7⇥ higher
write latency due to replication. Octopus does not replicate.
Average and tail read latency. We compare unladen read
latencies across different cache configurations. To do this, we
read a 1GB file using various IO sizes, once with a warm
cache (to report cache hits) and once with a cold cache (to
report misses). The results are shown in Figure 3b. Assise has
a second-layer cache in SharedFS before going remote, and
we report three cases for Assise. Reads in Octopus are always
remote.

We first compare cache-hit latencies (HIT), where Assise
is up to 40% faster than NFS and 50% faster than Ceph.
Assise serves data from the LibFS read cache, while NFS
and Ceph use the kernel buffer cache. If Assise misses in the
LibFS cache, data may be served from the local SharedFS
(MISS). Assise-MISS incurs up to 3.2⇥ higher latency than
Assise-HIT due to reading the extent tree index, especially
for larger IO sizes that read a greater number of extents. If
Assise misses in both caches, it has to read from a remote
replica (RMT). Assise-RMT incurs the latency of an RPC
using RDMA. When NFS and Ceph miss in the cache, their
clients have to fetch from remote servers, which incurs up
to orders of magnitude higher average and tail latencies than
Assise-RMT and Assise-MISS. Ceph performs worse than
NFS due to a more complex OSD read path.

The elimination of a cache hurts Octopus’ read perfor-
mance, because it has to fetch metadata and data (serially)
from remote NVM (RMT). Octopus’ read latency is up to
two orders of magnitude higher than the other file systems
hitting in the cache, and up to an order of magnitude lower
than NFS and Ceph missing in the cache. Octopus does not
handle small (4KB) reads well due to FUSE overheads,
with up to 3.54⇥ Assise-RMT read latency. This overhead is
amortized for larger reads (� 64KB), where Octopus incurs
up to 1.46⇥ the read latency of Assise-RMT. By configuring
FUSE to use the kernel buffer cache for Octopus, we reduce
Octopus’ read hit latency to 1.8⇥ that of Assise-HIT, with the
remaining overhead due to FUSE. However, using the kernel

buffer cache inflates write latencies for Octopus by up to an
order of magnitude due to additional buffer cache memory
copies.
Peak throughput. Figure 4 shows average throughput of
sequential and random IO to a 120GB dataset (on the local
socket) with 4KB IO size from 24 threads (all cores of one
socket). To evaluate a standard replication factor of 3, we use
3 machines for Assise and Ceph. The dataset is sharded over
24 files, and 5GB of data is written per thread. For random
writes, a random offset is generated for every IO. write calls
are not followed by fsync and the total amount of accessed
data is larger than the cache size, causing cache eviction on
write. The cache is initially cold so reads miss in the cache.
For Assise, we show cache miss performance from a local and
remote SharedFS. Octopus crashes during this experiment
and is not shown.

For sequential writes, Assise and NFS achieve 74% and
66% of the NVM-RDMA bandwidth (cf. Table 1), respec-
tively, due to protocol overhead for NFS and log header over-
head for Assise. Chain-replication in Assise affects through-
put only marginally. Ceph replicates in parallel to 2 remote
replicas, consuming 3⇥ the network bandwidth. This re-
duces its throughput to 31% of Assise and 35% of NFS. As-
sise achieves similar performance for sequential and random
writes, as Assise’s writes are log-structured. NFS and Ceph
perform poorly for random writes due to cache block mis-
prefetching incurring additional reads from remote servers,
causing Assise to achieve 4.8⇥ Ceph’s throughput. NFS
throughput is at only 67% that of Ceph, which is due to kernel
locking overhead.

To quantify the benefit of bypassing hardware cache co-
herence for cross-socket writes with DMA, we repeat the
benchmark, placing all files on the remote socket. We can see
that Assise-DMA attains 44% higher cross-socket through-
put than non-temporal processor writes (Assise). Sequential
and random writes provide comparable performance. NVM-
NUMA writes occur during eviction from the LibFS update
log (local socket) to the NVM shared cache (remote socket).
When writing to the local socket, Assise-DMA attains identi-
cal throughput to Assise, regardless of pattern.

For local sequential and random reads from the local
SharedFS cache, Assise achieves 90% and 68%, respectively,
of local, sequential NVM bandwidth. The 10% difference for
sequential reads to local NVM bandwidth is due to metadata
lookups, while random reads additionally suffer PMM buffer
misses [45]. Assise remote reads (Assise-RMT) attain full
NVM-RDMA bandwidth (3.8GB/s), regardless of access pat-
tern. NFS and Ceph are limited by NVM-RDMA bandwidth
for all reads and again have worse random read performance
due to prefetching.
Log size sensitivity. To evaluate the impact of log size on
write throughput, we conduct a sensitivity analysis. We run
a single-process microbenchmark that writes a 1GB file se-
quentially at 4KB IO granularity. This experiment models a

1020 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 1

 2

 3
 3.8

Sequential Random Cross-socket

Th
ro

ug
hp

ut
 (

G
B/

s)

Assise Assise-DMA NFS Ceph

(a) Write. 3.8GB/s is NVM-RDMA bandwidth.

 32

 0.1

 1

 10

Sequential Random

Th
ro

ug
hp

ut
 (

G
B/

s)

Assise Assise-RMT NFS Ceph

(b) Read. 32GB/s is NVM read bandwidth.

Figure 4: Average throughput with 24 threads at 4KB IO size.

 0
 0.2
 0.4
 0.6
 0.8

 1

16M 32M 64M 128M 256M 512M 1G 2G

N
or

m
. T

hr
ou

gh
pu

t

Log Size (B)

Figure 5: Worst-case throughput versus up-
date log size, normalized to 2GB.

 0.1
 1

 10
 100

 1000
 10000

Seq. Read
Rand. Read

Skewed Read
Seq. Write

Rand. Write
Sync Write

La
te

nc
y

(u
s)

Assise NFS Ceph Octopus

Figure 6: Average LevelDB benchmark latencies. Log scale.

worst case scenario. In the absence of sharing, processes can
quickly fill up their allocated log space. Figure 5 shows the
normalized write throughput at different log sizes. Through-
put increases with log size, but the performance impact is
small. Throughput increases by only 22% when using a 2GB
log size versus a 16MB log size, a 128⇥ increase in log size.
For workloads that share data, we expect this gap to be smaller,
as logs are evicted upon lease handoff. With 6TB of NVM
per machine, Assise can scale to thousands of processes even
with 2GB update logs. At 16MB, 100,000s of processes can
be supported.

5.3 Application Benchmarks

We evaluate the performance of a number of common cloud
applications, such as the LevelDB key-value store [33], the
Fileserver and Varmail profiles of the Filebench [75] bench-
marking suite, emulating file and mail servers, and the Min-
uteSort benchmark. We use 3 machines for LevelDB and
Filebench and 5 machines for MinuteSort.
LevelDB. We run a number of single-threaded LevelDB
latency benchmarks using LevelDB’s db_bench, including
sequential and random IO, skewed random reads with 1%
of highly accessed keys, and sequential synchronous writes
(fsync after each write). All benchmarks use a key size of
16B and a value size of 1KB with a working set of 1M KV
pairs. Figure 6 presents the average measured operation la-
tency, as reported by the benchmark.

Assise, Ceph, and NFS perform similarly for reads, where
caching allows them to operate close to hardware speeds. For
non-synchronous writes, NFS is up to 26% faster than Assise,
as these go to its client kernel buffer cache in large batches
(LevelDB has its own write buffer), while Assise is 69% faster
than NFS for synchronous writes that cannot be buffered.
Random IO and synchronous writes incur increasing LevelDB
indexing overhead for all systems. Ceph performs worse than
NFS for writes because it replicates (as does Assise) and

Figure 7: LevelDB random read latencies with warm replica.

Assise performs 22⇥ better. Octopus bypasses the cache and
thus performs worst for reads and better only than Ceph for
writes, as it does not replicate.
Warm replica read latency. Warm replicas reduce read la-
tency for warm data by allowing these reads to be served
from remote NVM, rather than cold storage. For this bench-
mark, we configure Assise to limit the aggregate (LibFS and
SharedFS) cache to 2GB and use the local SSD for cold stor-
age. We then run the LevelDB random read experiment with
a 3GB dataset. We repeat the experiment with two setups:
(1) with 3 hot replicas and (2) with 2 hot and 1 warm replica.
Figure 7 shows a CDF of read latencies. The benchmark ac-
cesses data uniformly at random, causing 33% of the reads to
be warm. Consequently, at the 50th percentile, read latencies
are similar for both configurations (served from cache). At
the 66th percentile, reads in the first setup are served from
SSD and have 2.2⇥ higher latency than warm replica reads
in the second setup. At the 90th percentile, the latency gap
extends to 6⇥.
Filebench. Varmail and Fileserver operate on a working set
of 10,000 files of 16KB and 128KB average size, respectively.
Files grow via 16KB appends in both benchmarks (mail de-
livery in Varmail). Varmail reads entire files (mailbox reads)
and Fileserver copies files. Varmail and Fileserver have write
to read ratios of 1:1 and 2:1, respectively. Varmail leverages
a write-ahead log with strict persistence semantics (fsync
after log and mailbox writes), while Filebench consistency
is relaxed (no fsync). Figure 8 shows average measured
throughput of both benchmarks. Assise outperforms Octo-
pus (the best alternative) by 6.7⇥ for Fileserver and 5.1⇥ for
Varmail. Ceph performs worse than NFS for Varmail due to
stricter persistence requiring it to replicate frequently and due
to MDS contention, as Varmail is metadata intensive.
Optimistic crash consistency. We repeat this benchmark for
Assise in optimistic mode (Assise-Opt) and change Varmail to
use synchronous writes for the mailbox, but non-synchronous
writes for the log. Prefix semantics allow Assise to buffer and

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1021

System Processes Partition [s] Sort [s] Total [s] GB/s
Assise 160 20.3 43.0 63.3 5.1

320 52.1 43.0 95.1 6.7
NFS 160 60.9 79.3 140.2 2.3

320 104.1 84.2 188.3 3.4
DAX 320 – 44.1 – –

Table 4: Average Tencent Sort duration breakdown.

coalesce the temporary log write without losing consistency.
Assise-Opt achieves 2.1⇥ higher throughput than Assise. File-
server has few redundant writes and Assise-Opt is only 7%
faster.

MinuteSort. We implement and evaluate Tencent Sort [46],
the current winner of the MinuteSort external sorting com-
petition [7]. Tencent Sort sorts a partitioned input dataset,
stored on a number of cluster nodes, to a partitioned output
dataset on the same nodes. It conducts a distributed sort con-
sisting of 1) a range partition and 2) a mergesort (cf. MapRe-
duce [32]). Step 1 presorts unsorted input files into ranges,
stored in partitioned temporary files on destination machines.
Step 2 reads these files, sorts their contents, and writes the
output partitions. Each step uses one process per partition; the
parallelism equals the number of partitions. A distributed file
system stores the input, output, and temporary files, implicitly
taking care of all network operations.

We benchmark the MinuteSort Indy category, which re-
quires sorting a synthetic dataset of 100B records with 10B
keys, distributed uniformly at random. Creating a 2GB input
partition per process, we run 160 or 320 processes in paral-
lel, uniformly distributed over 4 machines. MinuteSort does
not require replication, so we turn it off. It calls fsync only
once for each output partition, after the partition is written.
We compare a version running a single Assise file system
with one leveraging per-machine NFS mounts. For Assise,
we configure the temporary and output directories to be colo-
cated with the mergesort processes. We do the same for NFS,
by exporting corresponding directories from each mergesort
node. We conduct three runs of each configuration and report
the average. We use the official competition tools [7] to gen-
erate and verify the input and output datasets. We use equal
dataset sizes to compare Assise and NFS, rather than equal
time. Table 4 shows that Assise sorts up to 2.2⇥ faster than
NFS. Running twice the number of processes only marginally
improves performance, as Assise is bottlenecked by network
bandwidth.

To show that Assise’s POSIX implementation does not
reduce performance, we modify the sort step to map all files
into memory using EXT4-DAX and use processor loads and
non-temporal stores to sort directly in NVM, rather than using
file IO. We can see that the sort phase is 3% slower with DAX.
libc buffers IO in DRAM to write 4KB at a time to NVM,
performing better than direct, interleaved appends of 100B
records.

 1

 10

 100

 1000

Fileserver VarmailTh
ro

ug
hp

ut
 (K

op
s/

s)

Assise
Assise-Opt

NFS
Ceph

Octopus

Figure 8: Avg. Varmail and Fileserver throughput. Log scale.

5.4 Availability

Ceph and Assise are fault tolerant. We evaluate how quickly
these file systems return an application back to full perfor-
mance after the fail-over and recovery situations of §3.4. To
do so, we run LevelDB on the same dataset (§5.3) with a 1:1
read-write ratio and measure operation latency before, during,
and after fail-over and recovery. We report average results
over 5 benchmark runs.
Process fail-over. For this benchmark, we simply kill Lev-
elDB. In this case, the failure is immediately detected by the
local OS and LevelDB is restarted. Ceph can reuse the shared
kernel buffer cache in DRAM, resulting in LevelDB restoring
its database after 1.63s and returning to full performance after
an additional 2.15s, for an aggregate 3.78s fail-over duration.
With Assise, the DB is restored in 0.71s, including recovery
of the log of the failed process and reacquisition of all leases.
Full-performance operations occur after an additional 0.16s,
for an aggregate 0.87s fail-over time. Assise recovers this case
4.34⇥ faster than Ceph, showing that process-local caches do
not impede fast recovery.
OS fail-over. NVM’s performance allows for instant local re-
covery of an OS failure, rather than requiring a backup replica.
To demonstrate, we run the primary in a virtual machine (VM).
We kill the primary VM, then immediately start a new VM
from a snapshot stored in NVM. The snapshot starts in 1.66s.
We restart SharedFS within the new VM, which recovers the
file system within 0.23s. Finally, as in the process fail-over
experiment, LevelDB is restarted and resumes database op-
erations after another 0.68s. The aggregate fail-over time is
2.57s, 40⇥ faster than Ceph’s fail-over to a backup replica
(evaluated next).
Fail-over to hot backup. All following experiments use 2
machines (primary and backup). The LevelDB client pro-
cesses poll the file system’s cluster manager for membership
state, using a standard primary-backup ZooKeeper design pat-
tern for node fail-over [47]. LevelDB initially runs on the
primary, where we inject failures. Failures are detected by
LevelDB clients using a 1s heartbeat timeout via the cluster
manager. Once a node failure is detected, LevelDB immedi-
ately restarts on the backup.

A time series of measured LevelDB operation latencies
during one experiment run is shown in Figure 9. Pre-failure,
we see bursts of low latency in between stretches of higher
latency. This is LevelDB’s steady-state. Bursts show LevelDB

1022 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 9: LevelDB operation latency time series during fail-over
and recovery. Log scale.

writes to its own DRAM log. These are periodically merged
with files when the DRAM log is full, causing writes that are
higher latency (and sometimes blocking with Ceph), as the
writes wait on the log to become available.

We inject a primary failure by killing the primary’s file
system daemon (SharedFS for Assise and OSD for Ceph)
and LevelDB. During primary failure, no operations are ex-
ecuted. It takes 1s to detect the failure and restart LevelDB
on the backup (light shaded box). Due to unclean shutdown,
LevelDB first checks its dataset for integrity before execut-
ing further operations (dark shaded box). For failover, Assise
need only evict the per-process log (up to 1GB) on the backup
hot replica, making fail-over near-instantaneous. LevelDB
returns to full performance in both latency and throughput
230ms after failure detection. Ceph takes 3.7s after failure
detection to return to full performance. However, LevelDB
stalls soon thereafter upon compaction (further dark shaded
box), which involves access to further files, resulting in an
additional 15.6s delay, before reaching steady-state. Ceph’s
long aggregate fail-over time of 23.7s is due to Ceph losing
its DRAM cache, which it rebuilds during LevelDB restart.
Assise reaches full performance after failure detection 103⇥
faster than Ceph. LevelDB performs better on the backup, as
neither file system has to replicate.
Primary recovery. After 30s, we restart the file system dae-
mons on the primary, emulating the time for a machine reboot
from NVM. During this time, many file system operations
occur on the backup that need to be replayed on the primary.
As soon as the primary is back online, we cleanly close the
database on the backup and restart on the primary. Both As-
sise and Ceph allow applications to operate during primary
recovery, but performance is affected. Assise detects outdated
files via epochs and reads their contents from the remote hot
replica upon access. Once read, the local copy is updated,
causing future reads to be local. LevelDB returns to full per-
formance 938ms after restarting it on the recovering primary.

Number of processes

Th
ro

ug
hp

ut
 (o

ps
/s

)

1 3 6 12 24 48 96 192 10
0

1K
10

K
10

0K
1M

5M

Assise Assise−numa Assise−server Orion (emu) Ceph

Figure 10: Scalability of atomic 4KB file operations. Log scale.

Ceph also rebuilds the local OSD, but eagerly. Ceph takes
13.2s before LevelDB serves its first operation due to con-
tention with OSD recovery and suffers another delay of 24.9s
on first compaction, reaching full performance 43.4s after
recovery start. Assise recovers to full performance 46⇥ faster
than Ceph.
Fail-over to cold backup. We measure cascaded LevelDB
fail-over time to an Assise replica with a cold cache. LevelDB
serves its first request on the cold backup 303ms after failure
detection, but with higher latency due to SSD reads. LevelDB
returns to full performance after another 2.5s. At this point,
the entire dataset has migrated back to cache.

5.5 Scalability

We evaluate Assise’s scalability via 1) sharded file opera-
tions under increasing load and increasingly localized lease
management, and 2) parallel email delivery in Postfix [79].

5.5.1 Sharded File Operations

Processes in parallel create, write, and rename 4KB files with
random data in private directories. This benchmark uses 3
machines (6 sockets) and can scale throughput linearly with
the number of processes. To eliminate network bottlenecks
to scalability, we turn replication off.1 Figure 10 presents
average throughput over 5 runs of an increasing number of
processes, each operating on 480K files, balanced over pro-
cessor sockets. Ceph uses 3 sharded MDSes (1 per machine).
However, MDS sharding has negligible impact on Ceph’s
performance.

Ceph’s remote MDSes have high overhead for atomic oper-
ations, as each client has to communicate with remote MDSes.
This design prevents scalability beyond 8Kops/s. We emulate
Orion by restricting CC-NVM to use a single SharedFS lease
manager. In this case, data is stored on local NVM, but atomic
operations still use a remote lease manager. Orion has RDMA
mechanisms that simplify communicating with its MDS, but
these mechanisms cannot be used for operations that affect
multiple inodes (e.g., renames). Orion and Assise both use
RDMA RPCs. While Orion operates in the kernel, our emula-
tion uses user-level RDMA, which is light-weight, and Orion
(emu) outperforms Ceph by 8⇥.

1Due to the small size of our cluster, primary nodes would replicate to
each other and scalability would be limited by per-node link bandwidth. A
larger cluster would replicate to independent machines for each primary.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1023

Number of processes

Th
ro

ug
hp

ut
 (k

 m
ai

ls
/s

)

1 3 6 12 24 48 0.
0

0.
5

1.
0

1.
5

2.
0

Assise−rr Assise−sharded Assise−private Ceph

Figure 11: Postfix mail delivery throughput scalability.

To break down the benefit of local lease management in As-
sise, we progressively shard it, first by server (Assise-server),
then by socket (Assise-numa), and finally by process (Assise).
Assise-server outperforms Orion (emu) by 2.77⇥ and Assise-
numa improves throughput by another 1.93⇥. Assise scales
linearly with the number of processes until it hits NVM write
bandwidth, improving throughput by another 12.86⇥. Assise
outperforms Orion by 69⇥ and Ceph by 554⇥ at scale.

5.5.2 Postfix

We use the unmodified Postfix mail server to measure the per-
formance of parallel mail delivery. A load balancer machine
forwards incoming email from as many client machines as
necessary to maximize throughput to Postfix queue daemons
running on 3 testbed machines, configured as replicas. On
each Postfix machine, a pool of delivery processes pull email
from the machine-local incoming mail queue and deliver it
to user Maildir directories on a cluster-shared distributed file
system. To ensure atomic mail delivery, a Postfix delivery
process writes each incoming email to a new file in a process-
private directory and then renames this file to the recipient’s
Maildir.

We send 80K emails from the Enron dataset [51], with each
email reaching an average of 4.5 recipients. This results in a
total of 360K email deliveries. Each email has an average size
of 200KB (including attachments) and the dataset occupies
70GB. We repeat each experiment 3 times and report average
mail delivery throughput and standard deviation (error bars)
in Figure 11 over an increasing number of delivery processes,
balanced over machines. We compare various Assise configu-
rations and Ceph with 2 MDSes (1 and 3 MDSes performed
similarly).
Round-robin. In the first configuration (Assise-rr) the load
balancer uses a round-robin policy to send emails to mail
queues. Due to a lack of locality, mails delivered to the same
Maildir often require synchronization across machines, caus-
ing CC-NVM to frequently delegate leases remotely, which
increases delivery latencies. Despite this, Assise-rr is able to
outperform Ceph by up to 5.6⇥ at scale. Ceph cannot improve
throughput much further—even with 300 delivery processes,
its throughput improves by 8% versus 48 processes.
Sharded. We shard Maildirs by Enron suborganization over
machines [26]. The load balancer is configured to prefer the
recipient’s shard. For mail messages with multiple recipients,

it picks the shard with the most receivers. In case of mail
queue overload, the load balancer sends mail to a random
unloaded shard. Sharding users in this manner provides up to
20% better performance (Assise-sharded) due to the fact that
repeated deliveries to users of the same clique are likely to
occur on the same server, allowing CC-NVM to synchronize
delivery locally. At 15 processes, we are network-bound due
to replication. Sharding did not improve Ceph’s performance.

Private directories. We shard Maildirs by delivery process,
using process IDs for Maildir subdirectories, thereby elim-
inating the need for synchronization (Assise-private). This
change is not backward compatible with existing mail read-
ers, but it is the logical limit for sharding-based optimization.
Assise-private scales linearly until it is bottlenecked by net-
work bandwidth, but performance is similar to Assise-sharded.
This shows that local synchronization in Assise has minimal
overhead. Ceph performance continues to be gated by the
MDS.

Summary. Our results show that, with careful sharding of
the workload, Assise’s hierarchical coherence allows LibFS
processes to synchronize deliveries locally, providing almost
the same performance and scalability as private directories.

6 Conclusion

Assise is a distributed file system that provides low tail la-
tency, high throughput, scalability, and high availability with
a strong consistency model. To take advantage of low-latency
NVM, Assise demonstrates that filesystem metadata and data
should be colocated with applications. Colocation not only
enables high performance, but also fast recovery. Assise pro-
poses a novel, crash-consistent cache coherence protocol that
can leverage the performance of NVM, while providing lin-
earizability. Assise uses hot replicas in NVM to minimize
application recovery time and ensure data availability, while
leveraging a crash-consistent file system cache-coherence
layer (CC-NVM) to provide scalability. In comparing with
several state-of-the-art file systems, our results show that As-
sise improves write latency up to 22⇥, throughput up to 56⇥,
fail-over time up to 103⇥, and scalability up to 6⇥ versus
Ceph, while providing stronger consistency semantics.
Assise is available at https://github.com/ut-osa/assise.

Acknowledgments. Waleed Reda was supported by a fel-
lowship from the Erasmus Mundus Joint Doctorate in Dis-
tributed Computing (EMJD-DC), funded by the European
Commission (EACEA) (FPA 2012-0030). This work is sup-
ported in part by ERC grant 770889, NSF grant CNS-1900457,
and the Texas Systems Research Consortium. This work is
also supported by the National Research Foundation of Ko-
rea (NRF) grant funded by the Korea government (MSIT)
(2020R1C1C1014940). We thank Intel for access to the eval-
uation testbed. We thank the anonymous reviewers and our
shepherd, Kim Keeton, for their comments and feedback.

1024 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Amazon Elastic Block Store (EBS). https://aws.amazon.com/ebs/.

[2] Amazon Elastic File System (EFS). https://aws.amazon.com/efs/.

[3] Amazon S3. https://aws.amazon.com/s3/.

[4] Apache Crail. http://crail.apache.org/.

[5] Intel Memory Latency Checker. https://software.intel.com/en-
us/articles/intelr-memory-latency-checker.

[6] Octopus - github repository. https://github.com/thustorage/
octopus.

[7] Sort benchmark home page. http://sortbenchmark.org/.

[8] syscall_intercept. https://github.com/pmem/
syscall_intercept.

[9] Supporting filesystems in persistent memory. https://lwn.net/
Articles/610174/, Sept. 2014.

[10] Apache ZooKeeper. https://zookeeper.apache.org, Aug. 2017.

[11] Persistent memory programming, Aug. 2017. http://pmem.io/.

[12] The Sprite Operating System. https://www2.eecs.berkeley.edu/
Research/Projects/CS/sprite/sprite.html, Aug. 2017.

[13] Accelio, Aug. 2018. https://github.com/accelio/accelio.

[14] Intel Optane DC persistent memory, Mar. 2019. http://
www.intel.com/optanedcpersistentmemory.

[15] Intel SSD DC P4610 1.6TB, Apr. 2019. Google Shopping search.
Lowest non-discount price.

[16] NFS - Xfstests, 2019. http://wiki.linux-nfs.org/wiki/
index.php?title=Xfstests&oldid=5652.

[17] NVM Express over Fabrics 1.1, 2019. https://nvmexpress.org/
wp-content/uploads/NVMe-over-Fabrics-1.1-2019.10.22-
Ratified.pdf.

[18] Xfstests, 2019. https://git.kernel.org/pub/scm/fs/xfs/
xfstests-dev.git/.

[19] DDR4-3200 DRAM ECC Registered 128GB, Oct. 2020. Google
Shopping search. Lowest non-discount price.

[20] Intel Optane DC Persistent Memory Module 128GB, Oct. 2020. Google
Shopping search. Lowest non-discount price.

[21] A. Aghayev, S. Weil, M. Kuchnik, M. Nelson, G. R. Ganger, and
G. Amvrosiadis. File systems unfit as distributed storage backends:
Lessons from 10 years of Ceph evolution. In 27th ACM Symposium on
Operating Systems Principles, SOSP ’19, 2019.

[22] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. In ACM SIGCOMM 2008 Conference on
Data Communication, SIGCOMM ’08, page 63–74, 2008.

[23] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S.
Roselli, and R. Y. Wang. Serverless network file systems. In Fifteenth
ACM Symposium on Operating Systems Principles, SOSP ’95, pages
109–126, 1995.

[24] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania. The multikernel: A new
os architecture for scalable multicore systems. In ACM SIGOPS 22nd
Symposium on Operating Systems Principles, SOSP ’09, pages 29–44,
2009.

[25] R. Birke, I. Giurgiu, L. Y. Chen, D. Wiesmann, and T. Engbersen.
Failure analysis of virtual and physical machines: Patterns, causes
and characteristics. In 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN ’14, pages
1–12, 2014.

[26] A. D. Birrell, R. Levin, R. M. Needham, and M. D. Schroeder.
Grapevine: An exercise in distributed computing. In Eighth ACM
Symposium on Operating Systems Principles, SOSP ’81, pages 178–
179, 1981.

[27] M. Burrows. Efficient data sharing. PhD thesis, University of Cam-
bridge, UK, 1988.

[28] Ceph Documentation. Differences from POSIX. http://
docs.ceph.com/docs/master/cephfs/posix/.

[29] Y. Chen, Y. Lu, and J. Shu. Scalable RDMA RPC on reliable connection
with efficient resource sharing. In 14th EuroSys Conference 2019, pages
1–14, 2019.

[30] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Optimistic crash consistency. In 24th ACM Symposium on
Operating Systems Principles, SOSP ’13, pages 228–243, 2013.

[31] V. Chidambaram, T. Sharma, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Consistency without ordering. In 10th USENIX Conference
on File and Storage Technologies, FAST’12, 2012.

[32] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large clusters. In 6th Symposium on Operating Systems Design and
Implementation, OSDI’04, 2004.

[33] J. Dean and S. Ghemawat. LevelDB: A Fast Persistent Key-Value
Store. https://opensource.googleblog.com/2011/07/leveldb-
fast-persistent-key-value-store.html, 2011.

[34] M. Dong, H. Bu, J. Yi, B. Dong, and H. Chen. Performance and
protection in the ZoFS user-space NVM file system. In 27th ACM
Symposium on Operating Systems Principles, pages 478–493, 2019.

[35] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro. FaRM: Fast
remote memory. In 11th USENIX Conference on Networked Systems
Design and Implementation, pages 401–414, 2014.

[36] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan. Availability in globally distributed storage
systems. In 9th USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, pages 61–74, 2010.

[37] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System.
In 19th ACM Symposium on Operating Systems Principles, SOSP ’03,
pages 29–43, 2003.

[38] C. Gray and D. Cheriton. Leases: An efficient fault-tolerant mechanism
for distributed file cache consistency. In 12th ACM Symposium on
Operating Systems Principles, SOSP ’89, pages 202–210, 1989.

[39] T. Haynes and D. Noveck. Network file system (NFS) version 4
protocol, Mar. 2015. https://tools.ietf.org/html/rfc7530.

[40] J. L. Hennessy and D. A. Patterson. Computer Architecture, Sixth
Edition: A Quantitative Approach. 6th edition, 2017.

[41] D. Hitz, J. Lau, and M. Malcolm. File system design for an NFS
file server appliance. In USENIX Winter 1994 Technical Conference,
WTEC’94, 1994.

[42] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. N.
Sidebotham, and M. West. Scale and performance in a distributed file
system. SIGOPS Oper. Syst. Rev., 21(5):1–2, Nov. 1987.

[43] InsideHPC. Intel Optane DC persistent memory comes to Oracle
Exadata X8M, Sept. 2019. https://insidehpc.com/2019/09/
intel-optane-dc-persistent-memory-comes-to-oracle-
exadata-x8m/.

[44] N. S. Islam, M. Wasi-ur Rahman, X. Lu, and D. K. Panda. High
performance design for HDFS with byte-addressability of NVM and
RDMA. In 2016 International Conference on Supercomputing, ICS
’16, pages 8:1–8:14, 2016.

[45] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J.
Soh, Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson. Basic
performance measurements of the Intel Optane DC Persistent Memory
Module, Apr. 2019. https://arxiv.org/abs/1903.05714v2.

[46] J. Jiang, L. Zheng, J. Pu, X. Cheng, C. Zhao, M. R. Nutter, and J. D.
Schaub. Tencent sort. Technical report, Tencent Corporation, 2016.
http://sortbenchmark.org/TencentSort2016.pdf.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1025

[47] F. Junqueira and B. Reed. ZooKeeper: Distributed Process Coordina-
tion. O’Reilly Media, Inc., 1st edition, 2013.

[48] R. Kadekodi, S. K. Lee, S. Kashyap, T. Kim, A. Kolli, and V. Chi-
dambaram. SplitFS: Reducing software overhead in file systems for
persistent memory. In 27th ACM Symposium on Operating Systems
Principles, SOSP ’19, page 494–508, 2019.

[49] A. Kalia, M. Kaminsky, and D. G. Andersen. Using RDMA efficiently
for key-value services. ACM SIGCOMM Computer Communication
Review, 44(4):295–306, 2015.

[50] D. Kim, A. Memaripour, A. Badam, Y. Zhu, H. H. Liu, J. Padhye,
S. Raindel, S. Swanson, V. Sekar, and S. Seshan. Hyperloop: Group-
based NIC-offloading to accelerate replicated transactions in multi-
tenant storage systems. In 2018 Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM ’18, pages 297–312, 2018.

[51] B. Klimt and Y. Yang. The Enron corpus: A new dataset for email
classification research. In European Conference on Machine Learning,
pages 217–226. Springer, 2004.

[52] Y. Kwon, H. Fingler, T. Hunt, S. Peter, E. Witchel, and T. Anderson.
Strata: A cross media file system. In 26th Symposium on Operating
Systems Principles, SOSP ’17, pages 460–477, 2017.

[53] T. Le, J. Stern, and S. Briscoe. Fast memcpy with SPDK and Intel I/OAT
DMA engine, Apr. 2017. https://software.intel.com/en-us/
articles/fast-memcpy-using-spdk-and-ioat-dma-engine.

[54] S. Lee, J. Mohan, S. Kashyap, T. Kim, and V. Chidambaram. RECIPE:
Reusing concurrent in-memory indexes for persistent memory. In 27th
ACM Symposium on Operating Systems Principles, 2019.

[55] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica. Tachyon:
Reliable, memory speed storage for cluster computing frameworks. In
ACM Symposium on Cloud Computing, SOCC ’14, pages 6:1–6:15,
2014.

[56] H. Li, Y. Zhang, D. Li, Z. Zhang, S. Liu, P. Huang, Z. Qin, K. Chen, and
Y. Xiong. Ursa: Hybrid block storage for cloud-scale virtual disks. In
Fourteenth EuroSys Conference 2019, EuroSys ’19, pages 15:1–15:17,
2019.

[57] K. Li and P. Hudak. Memory coherence in shared virtual memory
systems. ACM Trans. Comput. Syst., 7(4):321–359, Nov. 1989.

[58] Y. Lu, J. Shu, Y. Chen, and T. Li. Octopus: An RDMA-enabled dis-
tributed persistent memory file system. In 2017 USENIX Annual Tech-
nical Conference, USENIX ATC ’17, pages 773–785, 2017.

[59] P. MacArthur and R. D. Russell. A performance study to guide RDMA
programming decisions. In IEEE 14th International Conference on
High Performance Computing and Communication and IEEE 9th In-
ternational Conference on Embedded Software and Systems (HPCC-
ICESS), pages 778–785, 2012.

[60] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and L. Vivier.
The new ext4 filesystem: current status and future plans. In Linux
Symposium, volume 2, June 2007.

[61] Mellanox. Mellanox Introduces Revolutionary DPU
based SmartNICs for Making Secure Cloud Possible, 2019.
https://blog.mellanox.com/2019/08/mellanox-introduces-
revolutionary-smartnics-for-making-secure-cloud-
possible/.

[62] C. Metz. The epic story of Dropbox’s exodus from the Amazon
cloud empire, Mar. 2016. https://www.wired.com/2016/03/epic-
story-dropboxs-exodus-amazon-cloud-empire/.

[63] J. Mickens, E. B. Nightingale, J. Elson, K. Nareddy, D. Gehring, B. Fan,
A. Kadav, V. Chidambaram, and O. Khan. Blizzard: Fast, cloud-scale
block storage for cloud-oblivious applications. In 11th USENIX Con-
ference on Networked Systems Design and Implementation, NSDI ’14,
pages 257–273, 2014.

[64] C. Mitchell, Y. Geng, and J. Li. Using one-sided RDMA reads to build
a fast, CPU-efficient key-value store. In USENIX Annual Technical
Conference, pages 103–114, 2013.

[65] J. Mohan, A. Martinez, S. Ponnapalli, P. Raju, and V. Chidambaram.
Crashmonkey and ACE: Systematically testing file-system crash con-
sistency. ACM Trans. Storage, 15(2), Apr. 2019.

[66] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri,
D. Ongaro, S. J. Park, H. Qin, M. Rosenblum, S. Rumble, R. Stutsman,
and S. Yang. The RAMCloud storage system. ACM Trans. Comput.
Syst., 33(3):7:1–7:55, Aug. 2015.

[67] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-Kiswany, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. All file systems are not
created equal: On the complexity of crafting crash-consistent applica-
tions. In 11th USENIX Conference on Operating Systems Design and
Implementation, OSDI’14, pages 433–448, 2014.

[68] H. Qiu, X. Wang, T. Jin, Z. Qian, B. Ye, B. Tang, W. Li, and S. Lu.
Toward effective and fair RDMA resource sharing. In 2nd Asia-Pacific
Workshop on Networking, pages 8–14, 2018.

[69] P. Raju, R. Kadekodi, V. Chidambaram, and I. Abraham. PebblesDB:
Building Key-Value Stores using Fragmented Log-Structured Merge
Trees. In 26th ACM Symposium on Operating Systems Principles,
SOSP ’17, 2017.

[70] A. Rosenbaum and A. Margolin. Dynamically-Connected Transport,
2018. Talk. 14th Annual Open Fabrics Alliance Workshop.

[71] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. LegoOS: A disseminated,
distributed OS for hardware resource disaggregation. In 13th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
’18, pages 69–87, 2018.

[72] SNIA. NVM Programming Model (NPM) Version 1.2, June 2017.

[73] M. Stonebraker. Operating system support for database management.
Commun. ACM, 24(7):412–418, July 1981.

[74] Y. Taleb, R. Stutsman, G. Antoniu, and T. Cortes. Tailwind: Fast and
atomic RDMA-based replication. In 2018 USENIX Annual Technical
Conference, USENIX ATC ’18, pages 851–863, 2018.

[75] V. Tarasov, E. Zadok, and S. Shepler. Filebench: A flexible framework
for file system benchmarking. USENIX ;login:, 41(1), 2016.

[76] S.-Y. Tsai, Y. Shan, and Y. Zhang. Disaggregating persistent memory
and controlling them remotely: An exploration of passive disaggregated
key-value stores. In 2020 USENIX Annual Technical Conference,
USENIX ATC ’20, pages 33–48, 2020.

[77] R. van Renesse and F. B. Schneider. Chain replication for supporting
high throughput and availability. In 6th Symposium on Operating
Systems Design and Implementation, OSDI’04, 2004.

[78] B. K. R. Vangoor, V. Tarasov, and E. Zadok. To FUSE or not to FUSE:
Performance of user-space file systems. In 15th USENIX Conference
on File and Storage Technologies, FAST’17, pages 59–72, 2017.

[79] W. Venema. Postfix project. http://www.postfix.org/.

[80] Y. Wang, M. Kapritsos, Z. Ren, P. Mahajan, J. Kirubanandam, L. Alvisi,
and M. Dahlin. Robustness in the Salus scalable block store. In 10th
USENIX Conference on Networked Systems Design and Implementa-
tion, NSDI ’13, pages 357–370, 2013.

[81] S. Watanabe. Solaris 10 ZFS Essentials. Prentice Hall Press, USA, 1st
edition, 2010.

[82] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn.
Ceph: A scalable, high-performance distributed file system. In 7th
Symposium on Operating Systems Design and Implementation, OSDI
’06, pages 307–320, 2006.

[83] J. Xu, J. Kim, A. Memaripour, and S. Swanson. Finding and fixing
performance pathologies in persistent memory software stacks. In 24th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’19, pages 427–439, 2019.

[84] J. Xu and S. Swanson. NOVA: A log-structured file system for hybrid
volatile/non-volatile main memories. In 14th USENIX Conference on
File and Storage Technologies, FAST ’16, pages 323–338, 2016.

1026 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[85] J. Yang, J. Izraelevitz, and S. Swanson. Orion: A distributed file system
for non-volatile main memory and RDMA-capable networks. In 17th
USENIX Conference on File and Storage Technologies, FAST ’19,
pages 221–234, 2019.

[86] ZDNet. Google cloud taps new Intel memory module for SAP
HANA workloads, July 2018. https://www.zdnet.com/article/
google-cloud-taps-new-intel-memory-module-for-sap-
hana-workloads/.

[87] ZDNet. Baidu swaps DRAM for Optane to power in-memory
database, Aug. 2019. https://www.zdnet.com/article/baidu-
swaps-dram-for-optane-to-power-in-memory-database/.

[88] P. Zuo, Y. Hua, and J. Wu. Write-optimized and high-performance
hashing index scheme for persistent memory. In 13th USENIX Sym-
posium on Operating Systems Design and Implementation, OSDI ’18,

pages 461–476, 2018.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1027

